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ABSTRACT: A noniterative transformation of earth-centered, earth-fixed (ECEF) 
Cartesian coordinates to geodetic coordinates of a point is presented. The transformation 
is based on ellipsoidal coordinates. The ECEF Cartesian coordinates of a point are first 
transformed to the ellipsoidal coordinates by closed formulas. Second, the reduced 
latitude referred to the reference ellipsoid takes the approximation to the reduced latitude 
referred to a confocal ellipsoid. Third, the approximation can be improved by a 
correction for the purpose of higher accuracy. The accuracy of the transformation is 
analyzed in the paper and it is shown that the derived geodetic coordinates are 
sufficiently accurate for the most geodetic purposes. 

 
INTRODUCTION 
 

The transformation between the Cartesian and geodetic coordinates is per-
formed more frequently since the popularization of satellite positioning, such as 
positioning from the global positioning system (GPS). From satellite po-sitioning 

one normally obtains the three-dimensional ECEF Cartesian coor-dinates of 
points. To be desired is the ability to find the geodetic coordinates for geodetic 
applications, such as investigating the earth’s gravity field, map projections, etc. 
There have been numerous sources working toward this transformation. To 
transform the Cartesian coordinates to the geodetic coor-dinates, two methods are 
usually found in literature. One of them proposes the use of approximations. 
Some authors have worked with an iterative pro-cess for the approximation (e.g., 

Heiskanen and Moritz 1967; Vicenty 1978; Heiskanen 1982; Benning 1987; 
Heck 1987). Other approximations are based on a noniterative process; for 
example Vincenty (1980), who brought in an auxiliary ellipsoid to solve the 
transformation problem and obtained relatively accurate results.  

In the second method, closed formulas are put forward for consideration. 
Several closed forms are based on solutions of a fourth-order equation or a cubic 
equation of an angle variable, such as geodetic latitude, reduced latitude referred 
to the reference ellipsoid (e.g., Penev 1978; Ozone 1985; Vanicek and Krakiwsky 
1986; Borkowski 1987, 1989; Lapaine 1990). Grafarend and Lohse (1991) 
developed their closed form using the principle of minimal distance mapping. 
Another closed form is based on the work of Bowring (Bowring 1976, 1985; 
Hofmann-Wellenhof et al. 1992; Soler et al. 1992). They introduced the 
parametric latitude of the foot point of the spatial point as an auxiliary angle 
variable. Bowring and Hofmann-Wellenhof formulas are identical and work quite 
well for small values of ellipsoidal height. The Soler method gives excellent 
results for very large values of ellipsoidal height. Here, the ECEF Cartesian 
coordinates are converted into the geodetic coordinates by means of the 
ellipsoidal coordinates introduced in connection with the normal gravity by 
Somigliana (e.g., Heiskanen and Moritz 1967). 
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Using this concept makes the method better and easier to understand. The 

algorithm is short, simple, and the solution is accurate enough for practical use. 
 
 
TRANSFORMATION BY MEANS OF ELLIPSOIDAL COORDINATES 
 

The relationship between the ECEF Cartesian coordinates (x, y, z) and the 
geodetic coordinates (f, l, h) of a point is given by 
 

x = (N _ h)cos f cos l;   y = (N _ h)cos f sin l (1a,b) 

z = S b 2 

N _ hD sin f (1c) a 2  
where f, l, and h represent the geodetic latitude, geodetic longitude, and height 
above the reference ellipsoid, respectively. The major and minor semi-axes of the 
reference ellipsoid are given by a and b, and N is the radius of curvature in the 
prime vertical: 
 

N(f) = 
 a2   

(2)     

(a2 cos2f _ b2 sin2f)1/2 
  

 
If the geodetic coordinates of a point P are known, it is easy to obtain 

Cartesian coordinates by the formulas in (1). But if the spatial Cartesian 
coordinates are given, for instance from GPS positioning, it is more difficult to 
find the corresponding geodetic coordinates, especially the solution of f and h, 
since (1c) involves the quantity a

2
/b

2
. In the following, a simple al-gorithm for 

the inverse transformation problem with the aid of the ellipsoidal coordinates is 
given.  

It is assumed that an ellipsoid of revolution passes through a point P in space, 

and the point R is the foot point on the reference ellipsoid. This ellip-soid and the 

reference ellipsoid have the same center and linear eccentricity E = Ïa2
 _ b

2
, i.e., 

both ellipsoids are confocal. The axes of both ellipsoids are coincident with each 

other (Fig. 1). Point P can be specified by the ellipsoidal coordinates: semiminor 

axis u, reduced latitude b0, and geodetic longitude. The relation of the Cartesian 

and ellipsoidal coordinates is given as follows (e.g., Torge 1991): 
 

x = Ïu2 _ E 2 cos b0 cos l; y = Ïu2 _ E 2 cos b0 sin l; z = u sin b0 (3a–c) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG.  1. Reference Ellipsoid and Confocal Ellipsoid 
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The parameter Ïu2
 _ E 

2
 is the semimajor axis of the confocal ellipsoid. Let u = b, 

then the ellipsoid is the reference ellipsoid itself. It is not difficult to find the 
inverse transformation for u(x, y, z), b0(x, y, z), l(x, y, z). The results are listed in 
the following: 
 

 

 
1 (r2  _ E 2) _ 1 

Ï 

      

u = r2 _ E 2)2  _ 4E 2z2 (4a) 
  

 Î2   2        

tan b0  = 
Ï 

u2 _ E 2      z  
;   tan l = 

 y  
(4b,c)  

u 

        

x 
 

Ïx2 
   

      _ y2 
  

where r = Ïx2
  _ y

2
  _ z

2
.  

It can be easily proved that b and b0 are not the same, if u  b. Never-theless, 

the basic idea is to take the reduced latitude b0 of the point P on the confocal 

ellipsoid as the reduced latitude b of the point R on the reference ellipsoid, i.e. 

 

tan b(0)  ' tan b0 (5) 
 
where the index (0) denotes the approximation of zero order. The geodetic 
latitude f of the point R or point P referred to the reference ellipsoid is given by 
the well-known formula 
 
  a  
 tan f =  tan b (6) 

 

  b  

and the ellipsoidal height h by  
  

h = Ï (z _ b sin b)2  _ (Q _ a cos b)2  (7) 
 
where Q = Ïx2

 _ y
2
. Once the reduced latitude of zero-order approximation is 

given, the ellipsoidal height of zero-order approximation can be obtained by 
substituting b0 for b in (7).  

To discuss the error of the zero-order approximation in detail, begin with the 
colinearity of points P and R: 
 

z = zR  _ (Q _ q)tan f (8) 
 
where q = Ïx2

R _ y
2
R. The points P and R lie, respectively, on the confocal 

ellipsoid and the reference ellipsoid. They must satisfy 
 

Q = Ï u2  _ E 2 cos b0;   z = u sin b0 (9) 

and  

q = a cos b;   zR  = b sin b (10) 

which lead to the desired equation  
  

bu sin b0  = aÏ u2  _ E 2 cos b0  tan b _ E 2  sin b (11) 
 
for the error analysis. Let b = b0 _ Db, and the right-hand side of (11) is 
expanded by the Taylor series at b = b0: 
 
bu sin b0  = aÏu2  _ E 2  cos b0  tan(b0  _ Db) _ E 2  sin(b0  _ Db) 
 

= (aÏu2  _ E 2  _ E 2)sin b0  _ (aÏu2  _ E 2  sec b0  _ E 2  cos b0)Db _ _ _ _ (12) 
 
Consequently, the error in b is approximate to 
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Db = f (u, b0) ' 

(bu _ aÏ u2  _ E 2 _ E 2)sin b0 (13) 
 

                 

(aÏu2  _ E 2  sec b0  _ E 2 cos b0)        

Setting the first derivative of the function f equal to zero —   
              

f 9(b0) = 
(bu _ aÏ u2  _ E 2 _ E 2)(aÏ u2  _ E 2 _ a Ï u2  _ E 2 tan b0  _ E 2) 
                     

 

(a Ïu2  _ E 2  sec b0  _ E 2  cos b0)
2 

(14) 
  

                      

— the maximal error uDbumax  under u = const. can then be found in   
                     

 

b0  = arctan Î1 _ 

    E 2 
     

    

' 457 (15) 

  

 aÏ u2  _ E 2  
Next, the function h(b) in (7) is also expanded by the Taylor series: 
 
h(b) = Ï(z _ b sin(b0  _ Db))2  _ (Q _ a cos(b0  _ Db))2 

 

= h(b0) _ h9(b0) _ Db _ 
1 

h0(b0) _ Db2  _ _ _ _ = h(b0) _ Dh (16) 
 

2    
Because the value of h0(b0) _ Db

2
/2 and the value of h9(b0) _ Db are the same 

order, it is necessary to estimate more carefully the corresponding error of 
ellipsoidal height, and the second derivative may be taken into consideration. 
Hence, the error of ellipsoidal height is approximately equal to 
 

Dh = hshould  _ hcomputed  = Db(a Ïu2  _ E 2  _ E 2  _ bu)cos b0  sin b0 /T 1/2  

_ Db2(2(aÏu2  _ E 2  _ bu _ (aÏu2  _ E 2  _ bu _ 2E 2)cos 2b0)T  

_ (E 2  _ aÏu2  _ E 2  _ bu)2  sin2 2b0)/(8T 3/2) (17) 
 
where T = (a _ Ïu2

 _ E 
2
)

2
 cos

2
b0 _ (b _ u)

2
 sin

2
b0. Figs. 2 and 3 illustrate the error 

estimation of the zero-order approximation in reduced latitude and 
in the ellipsoidal height with respect to the reference ellipsoid. 

The accuracy of the reduced latitude referred to the reference ellipsoid can be 
improved by adding the correction (13) to b(0). In this case, one obtains 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG.  2. Error of Reduced Latitude of Zero Order 
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FIG.  3. Error of Ellipsoidal Height of Zero Order 

 
the approximation of first order. The ellipsoidal height of first-order approx-
imation can be obtained by substituting b(1) for b in (7). 

 
NUMERICAL EXAMPLES 
 

The transformation results of some numerical examples by means of the 

noniterative approximation of zero and first order as well as the iterative method 

 
   

z 
   

e2N(f(i )) 
_1 

       

f(i _1)  = arctan 

   

  

S 1 _ 

 

D (18a) 

  

N(f(i )) _ h(i ) Ï x2  _ y2   
h

(i ) = 
Ï 

x2  _ y2  _ N(f(i )) (18b) 

   cos f(i )        
are given in Table 1. In (18), e = first eccentricity of the reference ellipsoid. The 
iterative method can be found in many geodesy books (e.g., Heck 1987). Eq. 
(18b) is numerically stable, if the value of f is less than 457. The stability 
problem is not of concern in this paper. The reader can refer to Wolf et al. (1997) 
for more detail.  

Because of their symmetry, only the cases for 07 _ f _ 907 are discussed in the 
following. The convergence conditions of the iterative method are 0.00010 in 
latitude and 1 mm in height. The number in the parentheses in the last column 
denotes the number of iterations. It is shown that there are almost no differences 
between the iterative approximation and noniterative approximation of zero 
order, if the ellipsoidal height is within 3 km. There-fore, the accuracy of the 
approximation of zero order is sufficient for most geodetic and navigation 
purposes. If the ellipsoidal height is 100 km over the reference ellipsoid (Case 7), 
one can achieve the maximum difference in latitude 0.080 and in height 0.2 mm. 
Even for the last case in Table 1, the maximum difference in latitude is only 
6.380 and in height 2.3 cm. For the purposes of higher accuracy, one can use the 
first-order approximation. In Table 1, one can see that there are no differences 
between the first order and iterative methods, if the ellipsoidal height does not 
exceed 800 km. For the case h = 1,000 km, the difference in latitude is only 
0.00020, with no difference in height. 
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TABLE  1. Numerical Examples  
 Cartesian Noniterative Method  
    

Case coordinates Zero order First order Iterative method 

(1) (2) (3) (4) (5) 
     

1 x = _2,259,148.993 f = 45700900.00000 f = 45700900.00000 f = 45700900.00000 
 y = 3,912,960.837 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,488,055.516 h = 1,000.000 m h = 1,000.000 m h = 1,000.000 m (4) 

2 x = _2,259,502.546 f = 45700900.00000 f = 45700900.00000 f = 45700900.00000 
 y = 3,913,573.210 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,488,762.622 h = 2,000.000 m h = 2,000.000 m h = 2,000.000 m (4) 

3 x = _2,259,856.100 f = 45700900.00010 f = 45700900.00000 f = 45700900.00000 
 y = 3,914,185.582 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,489,469.729 h = 3,000.000 m h = 3,000.000 m h = 3,000.000 m (5) 

4 x = _2,260,209.653 f = 45700900.00010 f = 45700900.00000 f = 45700900.00000 
 y = 3,914,797.955 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,490,l76.836 h = 4,000.000 m h = 4,000.000 m h = 4,000.000 m (5) 

5 x = _2,262,330.973 f = 45700900.00090 f = 45700900.00000 f = 45700900.00000 
 y = 3,918,472.189 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,494,419.477 h = 10,000.000 m h = 10,000.000 m h = 10,000.000 m (5) 

6 x = _2,265,866.507 f = 45700900.00340 f = 45700900.00000 f = 45700900.00000 
 y = 3,924,595.914 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,501,490.544 h = 20,000.000 m h = 20,000.000 m h = 20,000.000 m (5) 

7 x = _2,294,150.778 f = 45700900.08280 f = 45700900.00000 f = 45700900.00000 
 y = 3,973,585.709 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 4,558,059.087 h = 100,000.000 m h = 100,000.000 m h = 100,000.000 m (5) 

8 x = _2,541,638.152 f = 45700904.31510 f = 45700900.00010 f = 45700900.00000 
 y = 4,402,246.414 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 5,053,033.834 h = 800,000.013 m h = 800,000.000 m h = 800,000.001 m (5) 

9 x = _2,612,348.830 f = 45700906.35120 f = 45700900.00020 f = 45700900.00000 
 y = 4,524,720.901 l = 120700900.00000 l = 120700900.00000 l = 120700900.00000 
 z = 5,194,455.190 h = 1,000,000.023 m h = 1,000,000.000 m h = 1,000,000.000 m (5) 
      

Note: Geodetic coordinates are related to WGS84. 

 

CONCLUSIONS 
 

A noniterative transformation of the ECEF Cartesian coordinates to geo-detic 
coordinates based on the ellipsoidal coordinates has been developed. The results 
are most satisfactory. For a point whose height is within 3 km over the reference 
ellipsoid, the approximation of zero order is accurate enough. The approximation 
of zero order is already very suitable for the most geodetic applications, since the 
regions of the most geodetic activities are seldom over 3 km high. For the regions 
with higher altitude and precise navigation, the approximation of first order can 
be used in order to obtain the higher accuracy. If a user programs or makes the 
first-order solution ‘‘standard,’’ one never need worry whether an answer is 
‘‘good enough.’’ 
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