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Preface

Positioning techniques and algorithms have been studied for some years at the Tampere Univer-
sity of Technology within several research groups. This course hand-out brings together the
expertise of researchers of the TUT Department of Computer Systems and the TUT Department
of Mathematics. The course is divided into two parts: MAT-45806 Mathematics for Positioning,
that covers Sections 1 and 2, and TKT-2546 Methods for Positioning, Sections 3–5.

Our objective has been to collect together most important algorithms and mathematical tools
used in positioning including examples and starting from the basics. We do not go into details
of specialized techniques and equipments, but after this course student should be able to solve
application dependent problems without having to “re-invent the wheel” again and again.

Prerequisites are first-year engineering mathematics and basics of probability. Additionally,
the course TKT-2536 Introduction to Satellite Positioning is a useful but not compulsory
prerequisite. There is no official course text book in addition to this hand-out, mostly because
the authors have not managed to find a single book to cover all the material on the level of
abstraction we need. The battery of positioning computation methods is collected from different
areas of mathematics and engineering sciences, and there are often school and interpretation
differences between them, so we have tried to use common notations and represent connections
between different ways of thinking as best as we could.

The authors would like to thank Sami Tiainen for the initial translation of the manuscript, and
professor Robert Piché for suggesting various corrections.

Tampere, January 29, 2008

the authors
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Chapter 1

Preliminaries

SIMO ALI-LÖYTTY

In this chapter, we review the mathematical concepts and tools necessary for digesting the
rest of the material. The reader is assumed to be familiar with most of the material, and is
encouraged to look up some of the cited references if this is not the case. Mathematically
speaking, positioning is finding the “best”∗ estimator for state x ∈ R

n using the equation

y = f (x)+ ε. (1.1)

Here y is a vector that contains measurements and ε is called the error (unknown). An important
special case of equation (1.1) is when function f is linear; this special case is handled in
Section 1.2. Often the error term ε and possibly also the state x are modeled as random variables.
Because of this we review some probability theory in section 1.3. At the end of the chapter we
handle coordinate systems in 1.4 and moving coordinate systems in 1.5, which are a natural part
of positioning. First of all we give short introduction to linear algebra in 1.1.

1.1 Linear Algebra

Here we give short introduction to linear algebra, which is covered in detail in, for example,
[31, 32]. The following lists some properties of a matrix A ∈ R

m×n.

• The null space of matrix A is N (A) = {x ∈ R
n|Ax = 0}.

• The column space of matrix A is R (A) = {y ∈ R
m|y = Ax;x ∈ R

n}.

• dim(R (AT)) = dim(R (A)) = rank(A).

∗It is not at all obvious what the word “best” means. One of the tasks of the mathematical modeller is to define a
criterion to compare estimators. Often this criterion is a so-called cost function, for instance in the form ‖y− f (x̂)‖2

or E(‖x− x̂‖2).
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• dim(N (A))+ rank(A) = n (The Rank Theorem).

• A is orthogonal if AT A = I.

• A ∈ R
n×n is symmetric if AT = A.

• A ∈ R
n×n is idempotent if AA = A.

• A ∈ R
n×n and Ax = λx, where x 6= 0. Now λ is an eigenvalue of the matrix A and the

corresponding eigenvector is x.

Example 1. Let A be idempotent and λ is arbitrary eigenvalue of A corresponding eigen-

vector x. Now

λx = Ax = AAx = λ2x =⇒ λ = 1 or λ = 0,

so eigenvalues of an idempotent matrix A are all either zero or one.

Let matrix A ∈ R
n×n be symmetric. Then

• A is positive definite, denoted A > 0, if xT Ax > 0 for all x 6= 0.

• A is positive semi-definite, denoting A ≥ 0, if xT Ax ≥ 0 for all x.

• A > B is interpreted as A−B > 0, and A ≥ B as A−B ≥ 0.

Example 2. If A ≥ 0 and λ is an arbitrary eigenvalue of matrix A corresponding to eigen-

vector x, then

λx = Ax =⇒ λ‖x‖2 = xT Ax ≥ 0 =⇒ λ ≥ 0,

so all eigenvalues of a positive semi-definite matrix are non-negative.

Theorem 1 (Schur decomposition). Let A ∈ R
n×n be symmetric. Then there is an orthogonal

square matrix Q and diagonal matrix Λ so that

A = QΛQT . (1.2)

Because Q is orthogonal, the inverse matrix of Q is QT . From Eq (1.2) follows that AQ = QΛ,
so diagonal elements of diagonal matrix Λ are eigenvalues of matrix A and columns of matrix Q
are normalized eigenvectors corresponding diagonal elements of Λ.

Definition 1 (Square root of matrix A ≥ 0). Using Schur decomposition we get

A = Q⌈λ1, . . .λn⌋QT .

where λi ≥ 0 for all i ∈ {1, . . . ,n} (Example 2). We define the square root∗ of matrix A as

A
1
2 = Q⌈

√
λ1, . . .

√
λn⌋QT .

∗Usually matrix B is called a square root of matrix A if A = BB. In some cases also matrix C is called a square root
of matrix A if A = CCT . Neither one of the above matrices (B or C) is unique. Notice that our definition of the

matrix A
1
2 fulfills both definitions.
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1.2 Overdetermined linear system of equations

Consider the linear system of equations

Ax = y, (1.3)

where A ∈R
m×n and y ∈R

m. Assume that the columns of the matrix A are linearly independent
i.e.

Ax = 0 only if x = 0.

If m > n, the system is called overdetermined, which can happen when for instance there are
more measurements than unknowns. Generally the overdetermined equation has no exact solu-
tion, in which case one approach is to search for the least squares solution

x̂ = argminx‖y−Ax‖2. (1.4)

Because (see Exercise 1.3)

‖y−Ax‖2 = ‖A((AT A)−1AT y− x)‖2 +‖y−A(AT A)−1AT y‖2, (1.5)

the solution of Equation (1.4) is

x̂ = (AT A)−1AT y. (1.6)

If the system Ax = y is to be solved with Matlab software, it is recommended to use backslash-
command A\y instead of computing the inverses explicitly.

Example 3. Let y be measurement and initial guess is x0. Compute estimate x̂ that minimizes

‖y−Hx‖2 +‖x0 − x‖2.

x̂ = argminx(‖y−Hx‖2 +‖x0 − x‖2)

= argminx

(∥∥∥∥
[

y

x0

]
−
[

H
I

]
x

∥∥∥∥
2
)

(1.6)
=
(
HT H+ I

)−1 (
HT y+ x0

)
.

Example 4. We get following two-dimensional

[
xi

yi

]
measurements

{[
−1
0

]
,

[
0
0

]
,

[
0
1

]
,

[
1
1

]
and

[
2
2

]
,

}

Estimate parameters of equation y = ax + b so that error ∑5
i=1‖yi − (axi +b)‖2 is as small as

possible.
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Now

5

∑
i=1

‖yi − (axi +b)‖2 =

∥∥∥∥∥∥∥∥∥∥




0
0
1
1
2



−




−1 1
0 1
0 1
1 1
2 1




[
a

b

]

∥∥∥∥∥∥∥∥∥∥

2

= ‖y−Az‖2

It follows from Eq (1.6) that solution is

ẑ = (AT A)−1AT y =

[
6 2
2 5

]−1[
5
4

]
=

1

26

[
5 −2
−2 6

][
5
4

]
=

[
17
26
14
26

]
.

So the approximated equation is y = 17
26x+ 7

13 .

1.3 Probability theory

In this section, we briefly review the basics of probability theory focus being on normal distri-
bution and conditional probability. For a proper definition of a random variable, see [44, 14].
In this section, a random variable is denoted in boldface, e.g. x, and can be either vector or
scalar. (In later sections, it should be clear from the context whether boldface is used to refer to
a vector or to a random variable.) The density function of random variable x is denoted as fx(x)
or px(x) and cumulative function as Fx(x). The independence of random variables is a central
concept: it is needed for instance in filtering in Chapter 3.

Definition 2 (Independence). Random variables x1, . . . ,xk are independent if

Fx1,...,xk
(x1, . . . ,xk) =

k

∏
i=1

Fxi
(xi), ∀x1, . . . ,xn ∈ R

n.

Theorem 2. Random variables x1, . . . ,xk are independent if and only if

fx1,...,xk
(x1, . . . ,xk) =

k

∏
i=1

fxi
(xi), ∀x1, . . . ,xn ∈ R

n.

Example 5. Let the density function of a two-dimensional random variable x = [x1,x2] be

fx1,x2(x1,x2) =

{
1
π , when x2

1 +x2
2 ≤ 1

0, otherwise
.

Are the random variables x1 and x2 independent?

Now the density functions of the marginal distributions are

fx1(x1) =

Z ∞

−∞
fx1,x2(x1,x2)dx2 =

{
2
π

√
1− x2

1, when |x1| ≤ 1

0, otherwise
and

fx2(x2) =

Z ∞

−∞
fx1,x2(x1,x2)dx1 =

{
2
π

√
1− x2

2, when |x2| ≤ 1

0, otherwise
.
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Because

fx1(0) fx2(0) =
4

π2
6= 1

π
= fx1,x2(0,0),

it follows from Theorem 2 that the random variables x1 and x2 are not independent.

Definition 3 (Expectation). Assume that x is a continuous random variable and that the integral

Z ∞

−∞
|g(u)| fx(u)du

converges. Then the expectation of the random variable matrix g(x) is

E(g(x)) =

Z ∞

−∞
g(u) fx(u)du.

The next theorem follows from the linearity of integration.

Theorem 3. If A ∈ R
p×n and b ∈ R

p are constant, then

E(Ax+b) = AE(x)+b.

The mean µx = E(x) and the covariance matrix Σx = V(x) = E((x−µx)(x−µx)
T ), of random

variable x are important expectation values.

The correlation matrix of random variable x is

Rx = DΣxD, (1.7)

where D is a diagonal matrix whose diagonal contains the square roots of the reciprocals of the
diagonal elements of the covariance matrix Σx.

Example 6. Let xi be independent identically distributed continous random variables, so that

E(xi) = µ and V(xi) = Σ. Define random variable x̄ = 1
n ∑n

i=1 xi. Now

E(x̄) =

Z

(
1

n

n

∑
i=1

xi

)
n

∏
k=1

fxk
(xk)dx1 · · ·dxn =

1

n

n

∑
i=1

Z

xi fxi
(xi)dxi = µ and

V(x̄) =
Z

(
1

n

n

∑
i=1

(xi −µ)

)(
1

n

n

∑
j=1

(x j −µ)

)T
n

∏
k=1

fxk
(xk)dx1 · · ·dxn

=
1

n2

n

∑
i=1

n

∑
j=1

Z

(xi −µ)(x j −µ)T
n

∏
k=1

fxk
(xk)dx1 · · ·dxn =

1

n
Σ.

The random variable x̄ is an unbiased estimator of the parameter µ because E(x̄−µ) = 0.

Furthermore, we see that V(x̄) = 1
n
Σ → 0, when n → ∞. Thus, for all ε > 0, the probability

P(‖x̄−µ‖ > ε) → 0 when n → ∞. Therefore, the estimator x̄ is also consistent.
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1.3.1 Normal distribution

We assume that the reader is familiar with the one-dimensional normal distribution. We define
n-dimensional normal distribution as follows.

Definition 4 (Normal distribution). An n-dimensional random variable x is normal distributed

with parameters µ∈R
n and Σ∈R

n×n, Σ≥ 0, denoted x∼N(µ,Σ) or x∼Nn(µ,Σ), if the random

variable aT x is an one-dimensional normal distribution or constant for all vectors a ∈ R
n.

Let x ∼ N(µ,Σ). Then the parameters are the mean µ = E(x) and the covariance Σ = V(x) of
the random variable x. If Σ is positive definite, then the density function of random variable x is

fx(x) =
1

(2π)
n
2
√

det(Σ)
exp

(
−1

2
(x−µ)T Σ−1(x−µ)

)
. (1.8)

If Σ positive semi-definite but singular, then we call the distribution a singular normal distri-
bution. For instance, in Chapter 3 the state model error wk−1 (3.1) can quite possibly follow
singular normal distribution. This happens for instance when we know that the user is stationary,
then the position state model is simply xk = xk−1 +wk−1, where wk−1 ∼ N(0,0).

Example 7 (Visualizing the normal distribution). Figure 1.1 shows the density function of the

random variable

x ∼ N(0,Σ), (1.9)

where Σ =

[
16 24
24 52

]
= 1

5

[
1 −2
2 1

][
82 0
0 22

][
1 2
−2 1

]
.

−12
−6 

0  
6  

12 

−12

−6 

0  

6  

12 
0    

0.005

0.01 

 f
 x

 x
1

 x
2 −12 −6 0 6 12

−12

−6

0

6

12

 x
1

 x
2

Figure 1.1: Two visualizations of the density function of normal distribution (1.9) in the area
|x1| ≤ 12, |x2| ≤ 12

The picture on the left shows density function (1.8) values. The picture on the right shows the

level curve of the density function that contains 68% of the probability mass, see Exercise 1.10.

The picture on the right also contains line segments which are directed along the eigenvectors

of Σ and whose lengths are proportional to the square roots of corresponding eigenvalues.
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Theorem 4. If x ∼ N(µ,Σ) and y = Ax+b then y ∼ N(Aµ+b,AΣAT ).

Example 8 (Generation of normal distributed random varibales). If u ∼ Nn(0, I) then random

variable x = Σ
1
2 u+µ has normal distribution with parameters µ ja Σ (Theorem 4) that is

x ∼ Nn(µ,Σ).

If we can generate random variables from distribution Nn(0, I) then we can generate random

variables from arbitrary normal distribution Nn(µ,Σ). For example, in Matlab software we can

use the command:

x=sqrtm(Sigma)*randn(n,1)+mu

Figure 1.2 shows one hundred samples (with some samples outside the figure) from normal

distribution (1.9). Compare Figure 1.2 and Figure 1.1.

-12 -6 0 6 12
-12

-6

0

6

12

 x
1

 x
2

Figure 1.2: 100 samples from normal distribution (1.9).

Theorem 5. Let x ∼ N(µ,Σ). Then Ax and Bx are independent if and only if AΣBT = 0.

Example 9. Let
[

x

y

]
∼ N

([
x̄

ȳ

]
,

[
Σxx Σxy

Σyx Σyy

])
ja z = x−ΣxyΣ−1

yy y.

Are random variables z and y independent?

Note that

[
I −ΣxyΣ−1

yy

][ Σxx Σxy

Σyx Σyy

][
0
I

]

=
[

Σxx −ΣxyΣ−1
yy Σyx Σxy −ΣxyΣ−1

yy Σyy

][ 0
I

]

=
[

Σxx −ΣxyΣ−1
yy Σyx 0

][ 0
I

]
= 0.

Thus, the random variables z and y =
[

0 I
][ x

y

]
are independent (Theorem 5).
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1.3.2 χ2 distribution

Definition 5. Random variable z is χ2 distributed with degrees of freedom n, denoted z ∼ χ2 (n),
if it has the same distribution as random variable xT x, where x ∼ Nn (0, I).

Example 10. Let x ∼ Nn(µ,Σ) be a non-singular random variable. Now Σ− 1
2 (x−µ) ∼ N(0, I),

and so

(x−µ)T Σ−1(x−µ) ∼ χ2 (n) .

Definition 6. Random variable z is noncentral χ2 distributed with n degrees of freedom and

noncentral parameter λ, denoted z ∼ χ2 (n,λ), if it has the same distribution as the random

variable xT x, where x ∼ Nn (µ, I) ja λ = µT µ.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

χ2(2,0)

χ2(3,0)

χ2(4,0)

χ2(2,4)
χ2(3,4)

χ2(4,4)

Figure 1.3: Density functions of noncentral χ2 distributions.

Theorem 6. Let x ∼ Nn (µ,Σ) be non-singular random variable, let matrix A be symmetric and

let matrix AΣ be idempotent. Now

xT Ax ∼ χ2 (rank(A) ,µT Aµ
)
.

Proof. Let B = Σ
1
2 AΣ

1
2 . Matrix B is symmetric because matrix A and Σ

1
2 are symmetric and

idempotent because

BB = Σ
1
2 AΣAΣ

1
2 = Σ

1
2 AΣAΣΣ− 1

2
idemp.

= Σ
1
2 AΣΣ− 1

2 = B.

Using Schur decomposition (Theorem 1) and Example 1 we get

B = Q

[
Irank(B) 0

0 0

]
QT ,

where Q orthogonal. In Exercise 1.2, we show that rank(B) = rank(A). Define rank(A)-

dimensional random variable y = [Irank(A),0]QT Σ− 1
2 x. Now using Theorem 4 we get

y ∼ N([Irank(A),0]QT Σ− 1
2 µ, Irank(A)).
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and so, by Definition 6,

xT Ax = xT Σ− 1
2 Q

[
Irank(A) 0

0 0

]
QT Σ− 1

2 x = yT y ∼ χ2(rank(A),µT Aµ).

1.3.3 Conditional density function

The conditional density function plays a central role in Bayesian probability theory.

Definition 7 (Conditional density function). The conditional density function of a random vari-

able x with condition y = y is defined with equation

fx|y(x|y) =
fx,y(x,y)

fy(y)
,

at points where the denominator is positive.

According to Theorem 2 we see that random variables x and y are independent if and only if
fx|y(x|y) = fx(x). Conditional expectation is defined correspondingly:

Definition 8 (Conditional expectation). The conditional expectation of a random variable x

with condition y = y is defined with equation

E(x|y = y) =
Z ∞

−∞
x fx|y(x|y)dx.

Notice that conditional expectation E(x|y = y) depends on the value y of the random variable y

and it is therefore also a random variable, defined in the same probability space y.

Example 11 (Conditional density function). Assume that the user’s state x is normally distrib-

uted according to x ∼ N(0,16), and we get measurement

y =
3

2
x+v,

where the error v∼N(0,16) is independent of the state (of the random variable x). Then density

function of joint distribution

[
x

v

]
is the product of the density functions of random variables

x and v. Easy calculation shows that

[
x

v

]
∼ N(0,16 · I), (1.10)

then according to Theorem 4

[
x

y

]
∼ N

(
0,

[
16 24
24 52

])
. (1.11)
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It can then be shown (Exercise 1.14) that

x|y ∼ N

(
6

13
y,

64

13

)
. (1.12)

For instance, if we get an observation y =−12, then the conditional distribution of random vari-

able x with condition y = −12 is N(−5 7
13 ,412

13). Graphically, the conditional density function

is a normalized slice of the density function in the plane y = y. Compare the function in plane

y =−12 on the left side of Figure 1.1 with the calculated density function of normal distribution

(Figure 1.4).

−12 −6 0 6 12
0

0.1

0.2

 x
1

Figure 1.4: The density function of normal distribution N(−5 7
13 ,412

13 ) within interval [−12,12],
which can be compared to the left hand side of Figure 1.1.
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1.4 Coordinate systems

JUSSI COLLIN

The precise definition of the coordinate systems used is a fundamental part of navigation. A
linear coordinate system consists of an origin and a basis, for instance (O,u,v,w), where vectors
u, v and w are linearly independent. Now any position can be given in component representation
r = xu+ yv+ zw, and coordinates x, y and z are uniquely defined.

When positioning with respect to Earth,

P

x

y

z

h

λ

φ

Figure 1.5: Geodetic coordinates and x-, y- and z-
axis of the corresponding rectangular
coordinate system.

curvilinear coordinate systems are often
necessary. For example, in a spher-
ical coordinate system, position is given
as coordinates (r,θ,ϕ). Here r is the
point’s distance from origin, angle θ

is the colatitude and ϕ is the azimuth
angle. The commonly used geodetic
coordinate system is slightly different
from this. The geodetic coordinate
system is generated by rotating an
ellipse around its minor axis. This
ellipsoid is usually characterized by two
parameters, the major axis length a and
flattening ratio f = a−b

a
(b is minor axis

length). Geodetic coordinates in this
coordinate system are defined as shown
in Figure 1.5, i.e.

• φ, geodetic latitude. Notice that the angle in question is the angle between the equatorial
plane and the normal vector of the ellipsoid surface.

• λ, geodetic longitude. The angle between reference meridian and meridian of the location
P.

• h, geodetic height. Signed distance from the ellipsoid.

In addition to mathematical definition, a coordinate system has to be fixed to some physical
entity. The problem here is the dynamic behavior of Earth – a planet is not a rigid body. An
realization of a coordinate is therefore fixed to some time instant, i.e. epoch. Typically the
origin is fixed to be the Earth’s mass center, the positive z-axis goes through the North Pole,
the reference meridian goes through the Greenwich observatory and major axis length as well
as flattening ratio are found by fitting an ellipsoid to the mean sea level of Earth. GPS uses
World Geodetic System 84 (WGS-84) coordinate system [43]. The Finnish coordinate system
realization (EUREF-FIN) has been defined in the Finnish Government Recommendation 153
[13].
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1.4.1 Coordinate transformation

Navigation algorithms often require transformations between different coordinate systems. For
instance, GPS computations start from inertial coordinates (satellites’ orbits), switch to geodetic
coordinates (coordinate system rotating with Earth) and finally to local coordinates for showing
the position on a 2D map. In inertial positioning computations the coordinates have to be
transformed perhaps even more often; sensors form their own coordinate system, sensor meas-
urements are with respect to inertial coordinates, and gravitation computation requires position
in geodetic coordinates.

Let A-coordinates be given as vector mA = [α1 α2 α3]
T and B-coordinates as vector mB =

[β1 β2 β3]
T . Here αi are coordinates of position P in coordinate system A and βi are the same

position’s coordinates in coordinate system B. Coordinate transformation is then the function

fB
A(mA) = mB. (1.13)

When the transformation is between linear coordinate systems this function is easy to find.
Assume that both coordinate systems have the same origin. The position vector q can be written
using the basis vectors and coordinates:

q = XAmA

q = XBmB ,

where columns of X are the basis vectors of the coordinate system in question. A matrix formed
from the basis vectors is non-singular, and thus the transformation is just

mB = X−1
B XAmA.

In the following equations, the basis vectors are assumed orthonormal, and therefore X−1 = XT .
Additionally, we set a natural base XA = I = [e1,e2,e3] for A. Then the transformation is simpli-
fied into form

mB = XT
BmA.

Now we can define a matrix often used in positioning, called the direction cosine matrix CB
A:

mB = CB
AmA, (1.14)

where mA is a vector given in coordinate system A and mB is the same vector in coordinate
system B. It can be shown (Exercise 1.15) that

CB
A =




cos(u,e1) cos(u,e2) cos(u,e3)
cos(v,e1) cos(v,e2) cos(v,e3)
cos(w,e1) cos(w,e2) cos(w,e3)


 , (1.15)

where (u,v,w) is the orthonormal basis of B. Coordinate transformation back to A is easy,
because CA

B = (CB
A)−1 = (CB

A)T . The following chain rule is needed especially in inertial navi-
gation algorithms:

CD
A = CD

B CB
A. (1.16)

Equation (1.15) is in quite nice form for handling coordinate frame rotations.
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Example 12. Assume that coordinate frames A1 and A2 are initially identical. Rotate the

frame A2 around the z-axis by angle θ. An observer using frame A1 sees an interesting object

in location aA1 = [1 1 1]T . Where does an observer using frame A2 find this object?

Answer: Define rotations as right handed, i.e. a positive rotation fo the vector v around the

vector w takes the tip of v towards the direction w×v. Note that every base vector is rotated

in coordinate transformation. Now it is easy to see that the z-axis is not transformed. The other

angles in equation (1.15) are also easy to find:

CA2
A1 =




cos(θ) cos(π
2 −θ) cos(π

2 )
cos(π

2 +θ) cos(θ) cos(π
2 )

cos(π
2) cos(π

2) cos(0)


 (1.17)

The solution is therefore aA2 = CA2
A1aA1 =




cos(θ)+ sin(θ)
cos(θ)− sin(θ)

1


.

In order to deal with more general rotations, it is good to introduce some mathematical tools
that make things easier. Denote with (a×) the matrix form of the cross product:

a×b = (a×)b =




0 −az ay

az 0 −ax

−ay ax 0


b (1.18)

Direction cosine matrix is not the only way to describe orientations of the coordinates. It can
be shown (see for instance [36] ), that direction cosine matrix can be represented in the form

CA1
A2 = I+

sin(p)

p
(p×)+

1− cos(p)

p2 (p×)(p×), (1.19)

where p is the rotation vector and p its length. When coordinate frame A1 is rotated around
axis p by angle p, we get a new coordinate frame A2, and Equation (1.19) shows the connection
between the direction cosine matrix and the rotation vector. As an exercise, you will verify that
it does not matter whether the rotation vector is given in coordinates A1 or A2. In Example 12,
the rotation vector is p = [0 0 θ]T , and it is left as an exercise to show that when this is substituted
into formula (1.19) we get the transpose of the matrix (1.17), as expected.

1.5 Rotating coordinate frames

Transformations between coordinate frames that are moving linearly relative to each other are
easily handled by adding velocities and translating the origin. In this section we rather focus
on rotating coordinate frames. We start with simple rotation, i.e. keep the angular velocity
and direction of rotation vector constant. Assume again that coordinate frames A1 and A2 are
initially (t = 0) equivalent. Then the rotation vector can be given in the form

p = ωtu, (1.20)
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where ω (= ṗ) is angular speed (rad/s), t is time and u is unit vector. The derivative of Equa-
tion (1.20) with respect to time is thus the angular velocity

w = ṗ = ωu. (1.21)

Now the derivative of Equation (1.19) with respect to time is

ĊA1
A2 = ωcos(ωt)(u×)+ωsin(ωt)(u×)(u×)

= [cos(ωt)I+ sin(ωt)(u×)](w×)
. (1.22)

Here you should notice that CA1
A2(w×) = [Icos(ωt)+ sin(ωt)(u×)](w×) ∗. This form is more

compact, for instance the Coriolis equation can now be easily derived:

nA = CA
BnB ⇒

dnA

dt
=

dCA
BnB

dt
⇒

dnA

dt
=

dCA
B

dt
nB +CA

B
dnB

dt
⇒

dnA

dt
= CA

B(w×)nB +CA
B

dnB

dt
⇒

dnA

dt
= CA

B[dnB

dt
+w×nB]

(1.23)

Using the chain rule, we get rid of the initial assumption; if at first (t = 0) the connection
between coordinate systems is CA1

A2(0), then

CA1
A2 = CA1

A2(0)C
A2(0)
A2

and matrix CA1
A2(0) is constant with respect to time, i.e.

ĊA1
A2 = CA1

A2(0)Ċ
A2(0)
A2 .

After this, we need to be more careful with the angular velocity. INS literature often uses
the notation wB

IB, which reads as the angular velocity in B-coordinate frame with respect to I-
coordinate frame (wIB), and the vector is expressed in B-frame coordinates (wB). The subscript
conventions thus differ from those in the direction cosine matrix. I-coordinate frame means
inertial coordinate frame (it does not rotate nor accelerate in space), and B-coordinate frame is
a coordinate system fixed to the measurement unit. The vector wB

IB is in fact the output of an
ideal gyro triad.

The following coordinate frames are used in inertial navigation:

• Inertial frame (I), non-rotating, non-accelerating coordinate system. Newton’s laws of
motion apply in this coordinate system. In some cases (relativity theory) we additionally
need to assume that there is no gravitation in I-frame, but in this course the computations
in I-frame can be approximated with the ECI (Earth Centered Inertial) coordinate system.
The origin of ECI is the Earth’s mass center, and the axes keep their direction with respect
to stars.

∗This can be verified by using the formula (a×)(a×) = −‖a‖2I + aaT , for example
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• Earth frame (E), coordinate axes are fixed to Earth, z-axis has the same direction as
Earth rotation axis, x- and y-axes are in equatorial plane. In literature one often sees
abbreviation ECEF (Earth Centered Earth Fixed). The Earth-fixed frame rotates with
respect to the inertial fram with wE

IE ≈ [0 0 7.29×10−5]T (rad/s).

• Local frame (L), axes define directions “up–down”, “north–south” and “west–east”. It is
common to use ENU (East, North, Up) ordering, i.e. x-axis points east, y-axis north and
z-axis points up. When the origin is fixed to user’s position, CE

L is a function of time and
wL

IL = wL
IE +wL

EL, where the last term describes user’s movement with respect to Earth.

• Body frame (B), frame fixed to the vehicle in which the navigation system is used, or
the mobile unit in the case of personal navigation. This is the main coordinate system in
inertial measurements. Gyro triad measurement is wB

IB and the acceleration triad outputs
aB −gB, where a is acceleration in ECI and g is local gravitation acceleration.

Because the laws of motion apply only in I-frame, and sensors thus measure motion with respect
to this coordinate frame, it is important to have a good understanding of dynamics of coordinate
frames B-L-E-I. We start by finding the time derivative of the equation

CL
B = CL

I CI
B. (1.24)

First, note that

ĊI
L = CI

L(w
L
IL×)

and that its transpose is

ĊL
I = −(wL

IL×)CL
I .

Differentiating equation (1.24) with respect to time from both sides gives:

ĊL
B = ĊL

I CI
B +CL

I ĊI
B

When we also remember that ĊI
B = CI

B(wB
IB×), we end up with equation

ĊL
B = CL

B(wB
IB×)− (wL

IL×)CL
B. (1.25)

Numerical integration of equation (1.25) is the beef of inertial navigation algorithms.

Example 13. A satellite is in a circular orbit with radius R and inclination i. An observer at

the equator sees the satellite at zenith, going towards the northern hemisphere. What is the

satellite’s velocity and acceleration in E-coordinate system?

Answer: Choose an Earth-centered satellite-fixed coordinate frame S, where the satellite is in

location rS = [R 0 0]T . Let the x-axis of ECI- coordinate frame point to the satellite at instant
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t = 0, and let E- and I-coordinate coincide at the time of observation. Now we can see that

wI
IS = ωs[0 − sin(i) cos(i)]T , where ωs = 2π

T
and T is the orbital period, and

CE
S =




1 0 0
0 cos(i) −sin(i)
0 sin(i) cos(i)


 .

Using Earth’s angular speed ωe, we get wE
IE = [0 0 ωe]

T . We use Equation (1.25) in these

coordinate systems, i.e.

ĊE
S = CE

S (wS
IS×)− (wE

IE×)CE
S

and we get for instant t = 0

ĊE
S =




0 −ωs +ωe cos(i) −ωe sin(i)
ωs cos(i)−ωe 0 0

ωs sin(i) 0 0


 (1.26)

and

C̈E
S =




−ω2
s +2ωsωe cos(i)−ω2

e 0 0
0 −ω2

s cos(i)+2ωsωe −ω2
e cos(i) ω2

e sin(i)
0 −ω2

s sin(i) 0


 . (1.27)

Notice! “Velocity in E-coordinate system” now means: change of E-fixed position vector given

in E-frame with respect to time. It is not I-velocity vector given in E-coordinates (we will get

back to this in the INS part). That means ṙE needs to be thought as d
dt

(rE). The position of the

satellite is constant in S-coordinate system, i.e. ṙS = 0 and r̈S = 0. So the answer is

ṙE = ĊE
S rS = [0 R(ωs cos(i)−ωe) R(ωs sin(i))]T (1.28)

and

r̈E = C̈E
S rS = [R(−ω2

s +2ωsωe cos(i)−ω2
e) 0 0]T . (1.29)

In the case of a GPS satellite, applicable numerical values would be e.g. i = 0.967 rad, R =
26600 km, ωs = 151x10−6 rad/s, and

ṙE = [0 341 3310]T m/s

r̈E = [−0.414 0 0]T m/s2

The transformations between coordinate systems presented above were based on matrix algebra.
Another approach way is to use quaternion algebra ([8, 35]), where for instance the matrix (1.19)
corresponds to quaternion

qA1
A2 =

[
cos(1

2 p)

sin(1
2 p)p/p

]
. (1.30)
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Exercises

1.1. Let A ∈ R
n×n be symmetric. Show that

A > 0 ⇐⇒ the eigenvalues of A are positive

A > 0 ⇒ det(A) > 0

A > 0 ⇐⇒ A−1 > 0

1.2. Suppose that matrixes B > 0 and A have same size. Show that

rank(BAB) = rank(A).

1.3. (a) Let columns of matrix A ∈ R
m×n with m > n be linearly independent (rank(A) = n).

Show that matrix AT A is invertible.

(b) Show that equation (1.5) is correct.

1.4. Let matrices A > 0 and B > 0. Show that matrix A+B is invertible.

1.5. With A =

[
5 −4
−4 5

]
, compute A

1
2 .

1.6. Find all matrices B ∈ R
2×2 such that BB = I. Which ones of the obtained matrices are

symmetric and positive definite?

1.7. User is inside an equilateral triangle building. The length of each side of the triangle is
6l. User has distance measurements from each side, these measurements are l, 2l and 3l.
What is the least squares estimate of the user’s position?

1.8. Let A ∈ R
p×n and b ∈ R

p be constants and x a random variable such that V(x) = Σ.
Compute

V(Ax+b)

1.9. Consider the system y = Hx + ε, where ε ∼ N(0,σ2I). Compute the distribution of the
estimator

x̂ = (HT H)−1HT y.

Is the estimator unbiased (E(x− x̂) = 0)?

1.10. Give the equation of the ellipse shown on the right of Figure 1.1. (help. Matlab:
chi2inv(0.68,2)≈ 2.279)
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1.11. Let

x ∼ N

([
1
−1

]
,

[
5 −4
−4 5

])
ja a =

[
1
1

]
.

Compute the probability P
(
aT x ≤ 0

)
.

1.12. Let x ∼ χ2(n,λ). Compute E(x).

1.13. Let x ∼ N(x̄,Σx) and y ∼ N(ȳ,Σy) be independent random variable, for simplicity we
assume that Σx > 0 and Σy > 0. Show that

[
x

y

]
∼ N

([
x̄

ȳ

]
,

[
Σx 0
0 Σy

])
.

tip: If A and C are square matrixes, then det

([
A B
0 C

])
= det(A)det(C).

1.14. Prove Equation (1.12) starting from Definition 7.

1.15. Derive the direction cosine matrix (1.15).

1.16. Let p be rotation vector between frames A1 and A2. Show that pA1 = pA2. If CA1
A2 6= I, can

you find q 6= αp, α ∈ R which satisfies qA1 = qA2?

1.17. Try formula (1.19) with vectors p1 =
[

0 0 θ
]T

ja p2 =
[

0 0 −θ
]T

1.18. A hiker walks 5 km south, 5 km east and 5 km north, and ends up to the initial loca-
tion. What was the origin of his journey? Express the movement using direction cosine
matrices, and try to find those locations where C1

2C2
3C3

4 = I.

1.19. A maglev train runs from Helsinki to Rovaniemi at 300 km/h. How large lateral force is
needed to keep the train in north directed course?
What is the angle between Earth’s rotation axis and the direction of the train with respect
to time?
Assume a spherical Earth with radius R, train mass M and simplify the coordinates as:
Helsinki: 60o10′00′′ north latitude 25o0′00′′ east longitude
Rovaniemi: 66o30′00′′ north latitude 25o0′00′′ east longitude
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1.20. Let a mobile phone coordinate system (B) be defined as follows: x-axis points to direc-
tion given by numbers 9-6-3, y-axis points to direction given by numbers 9-8-7, and
z-direction is the cross product of x-axis and y-axis (from the screen to viewer of the
screen). Rotate the phone -90 degrees around phone’s y-axis. Next, rotate phone 90
degrees around x-axis. Finally, rotate phone 90 degrees around y-axis. Do the same math-
ematically, i.e. write direction cosine matrices. What happens if you change the order of
the rotations? What if you do the rotations with respect to a non-rotating (e.g. fixed to
your desktop) coordinate system?

1.21. Show that

ĊA1
A2 = CA1

A2(w×).

Hint: (1.19), (1.22) and uT (u×) = . . ..
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Chapter 2

Static positioning

NIILO SIROLA

Positioning (or localization) means estimation of a receiver’s coordinates and possibly other
interesting quantities (velocity, orientation, clock bias, etc). Many kinds of measurements
coming from different sources can be used, and to solve the problem we first form a math-

ematical model to describe the measurements, and then apply suitable mathematical machinery
to the model. No model describes reality perfectly, and often even if we knew the phenomenon
quite accurately we may still decide to use some simpler model that fits better to the mathemat-
ical method we want to (or know how to) use for the problem.

Static positioning means computating a single location estimate from several simultaneously
taken measurements, independent of previous or future measurements or estimates. The more
general time series solution will be tackled later in Chapter 3, Depending on the choice of
measurement model, the static positioning problem can be formulated as solving a nonlinear
system of equations either in a sense of least squares (Section 2.3), in closed form (Section 2.4),
or with respect to likelihoods (Section 2.5) or probability (Section 2.6).

Most of the methods needed for static positioning come from estimation theory, see e.g. [37, 41].

2.1 Measurement equations

Usually, not all details of the measurement process are known exactly, or it is not sensible to
include them all into the model. Simple models often are sufficiently accurate without making
computations too complicated. For instance, measurement error result from several different
factors that can have complex mutual dependencies, but still modelling the error with one
normally distributed term often works surprisingly well.

The measurement model can be written as a probability density function or in equation form. We
start from the equation form, which is simpler but has some limitations (e.g. all measurements
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have to be numerical and continuous). Measurements are thought to consist of a “true value”
and an error:

measurement = theoretical value at location x + error.

All the measured values are collected into a vector y and the system of equations is written in
the form

y = h(x)+v (2.1)

where h is a known vector valued vector function and v is the measurement error vector, whose
probability distribution is assumed known.∗

When measurements have been made and the measurement equations known, we search for
a location/state estimate x̂ that fits the measurements best. There are different solutions and
solution methods depending on what we mean by the words “fit” and “best”. The solution is
not always unique, that is, more than one location candidate may fit the measurements equally
well.

Example 14 (Measurement equations). Range measurement to a station located at s can be

written as

r = ‖s−x‖+ v,

where r is the measured range, x is location and ‖s−x‖ ( = h(x) ) is the true range.

As another example, GPS pseudorange

s1

pseudorange

clock bias

range
true

s2

s3

Figure 2.1: Positioning with pseudoranges. Clock

bias shows up as an error with same

magnitude in all pseudoranges.

measurement can be written as

ρ = ‖s−x‖+b+ v,

where b is the additional error in meters

caused by receiver’s clock bias.

Because the clock bias b is also an

unknown to be solved in the same way

as location, we define a 4-dimensional

state vector such that the first three state

components, denoted by x1:3, contain

location and the remaining component

x4 is the clock bias. If there are

measurements to several different satel-

lites/stations, then the measurement

equations (2.1) can be written in vector form



ρ1
...

ρn


= h(x)+v =



‖s1 −x1:3‖+ x4

...

‖sn −x1:3‖+ x4


+




v1
...

vn


 .

∗We do not get into the estimation of real-life measurement error distributions based on the properties of the trans-
mission path, transmitter and receiver or based on empirical measurement data. Just assume for now that the
measurement error distribution or at least its variance has been given (or guessed) beforehand.
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2.2 Error analysis and sensitivity

In addition to location or state estimates, we are interested about the accuracy and reliability of
the estimate. Measurements always contain errors, so after computing the location estimate an
essential question is how close to the true location the estimate can be promised to be. Before
actual error analysis, it is useful to classify different kinds of errors and to specify which of
them we even try to consider.

• modelled errors: caused by measurement errors and measurement geometry

• modeling errors: wrong assumptions/guesses about errors’ distributions or their depend-
encies, measurement resolution or detection threshold, incorrect values of natural
constants, etc.

• numerical errors: caused by limited accuracy in computations (and/or careless program-
ming)

• approximation, truncation and sampling errors: often result from intentional “optimiza-
tion” of the algorithm

• others: environmental factors, equipment misuse, coding bugs, etc.

In this section, we only consider modelled errors, i.e. the errors that our chosen measurement
model says will be there. The obtained error bound and estimates strictly speaking hold only
if there are no other kinds of errors, but all the models are correct, random errors follow their
assumed distributions, and computations are done without significant numerical errors. Error
bound computed this way have to be carefully interpreted along the lines of: “If the models were
correct, then. . . ”. Other error types are covered in the discussion of robustness and reliability in
Chapter 5.

The error of the estimation process can be characterized in different ways:

• Error propagation: Given the distribution (or at least the covariance) of measurement
errors (=input), compute the distribution (covariance) of the solution (=output)

• Confidence intervals: Compute the probability that the true location is inside a given area,
or determine an area that includes the true position with e.g. 95% probability

• Sensitivity analysis: How much do small changes in measurements change the solution.
If for measurements y we get estimate x̂, how much does the estimate change if the
measurement is ỹ = y+∆y, where the change ∆y is assumed relatively small?

2.3 Iterative least squares

Write the system of measurement equations (2.1) again with the help of residual:

p(x) = h(x)−y.
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The residual describes the incompatibility between measurements and an assumed location x.
If measurements are error-free, then the residual goes to zero when x is the true location (but
possibly also in other points). The idea of the least squares method is to determine a location
estimate x̂ that minimizes the expression p(x)T p(x).

If there are no measurement errors, then the residual goes to zero in true location x̄:

p(x̄) = 0,

in which case the solution(s) could be found also by directly solving the system of measurement
equations (see Section 2.4). Usually, the measurements contain some error, then the residual
does not necessarily have roots at all, and the location estimate is obtained by solving the minim-
ization problem:

x̂ = argmin
x

p(x)T p(x). (2.2)

Nonlinear optimization is a demanding problem and there is no general way to solve it analyt-
ically.

If the function to be minimized is well-behaved and there is an initial guess “close enough” to
the minimum, then we can use an iterative optimization method. The idea is to start from an
initial guess x0 and then compute refined estimates x1,x2, etc., until the solution does not change
anymore. In Gauss-Newton method [15, section 4.2.1], [20, p. 93], [33, section 9.6] (which in
positioning context is usually called iterative least squares method) the residual is linearized in
the neighborhood of xk using the first order Taylor expansion p(xk +∆xk) ≈ p(xk)+p′(xk)∆xk

and a step ∆xk is sought such that the linearized residual goes to zero:

p(xk+1) = p(xk +∆xk) ≈ p(xk)+p′(xk)∆xk = 0.

Denoting the residual’s Jacobian matrix as Jk = p′(xk) = h′(xk), the equation can be written in
the form

Jk∆xk = −p(xk).

As long as there are enough independent measurements, this is an overdetermined system of
linear equations, whose least squares solution (1.6) is

∆xk = −(JT
k Jk)

−1JT
k p(xk).

Thus, a better estimate for the minimizer is obtained with the iteration

xk+1 = xk − (JT
k Jk)

−1JT
k p(xk). (2.3)

For algorithm implementation, the initial guess x0 is needed, and starting from that, the itera-
tion is repeated until the solution has converged to some point x̂ (or the maximum number of
iterations has been reached). It can be shown that the iteration converges if the initial point is
“close enough” to the minimum and the second derivative of the residual is “small enough” [20].
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Algorithm 1 Gauss-Newton method (Iterative Least Squares)

1. Choose initial guess x0 and stopping tolerance δ. Set k = 0.

2. Compute Jk = h′(xk).

3. Step: xk+1 = xk +∆xk, where ∆xk = −Jk\(h(xk)−y)

4. If stopping condition ‖∆xk‖ < δ is not satisfied, then increase k and repeat from Step 2.

When using just satellite measurements, center of the Earth works as an initial guess when no
better information is available, because the measurement equations are nearly linear.

If some measurements are more accurate than others, the algorithm can further be improved
by using a weight matrix that forces good-quality measurement equations to be realized more
accurately than poor-quality equations. When the inverse of the measurement covariance matrix
is used as a weight matrix the problem to be solved is thus

x̂ = argmin
x

p(x)T Σ−1p(x). (2.4)

This produces the minimum variance estimate (proved in [26, chapter 6.A.1]), and in case of
normally distributed errors, also the maximum likelihood estimate (see Example 17 on page
31).

Algorithm 2 Weighted Gauss-Newton method (Iterative Weighted Least Squares)

1. Choose initial guess x0 and stopping tolerance δ. Additionally, measurement covariance
matrix Σ = cov(v) is required. Set k = 0.

2. Compute Jk = h′(xk)

3. Step: xk+1 = xk +∆xk, where ∆xk = −(Σ− 1
2 Jk)\

(
Σ− 1

2 (h(xk)−y)
)

4. If stopping condition ‖∆xk‖ < δ is not satisfied, increase k and repeat from item 2.

Remarks:

1. The Weighted Least Squares method gives optimal results (in variance sense) as long as
the measurement covariance is known (that is, if measurement errors follow the presumed
distribution). The least squares criterion is sensitive to large measurement errors, outliers,
which should be detected and removed.

2. If the measurement equation is strongly nonlinear, then the Gauss-Newton method can
behave poorly and some other optimization method such as line search or Levenberg-
Marquardt can be better. If the measurement equation has discontinuities, then it usually
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has to be either approximated with some continuous function or minimized with some
Monte Carlo type algorithm. [33]

3. In addition to measurement equations, inequality constraints (e.g. mobile phone network
cell sector boundary) can also be taken into the measurement model. Then the problem
becomes a constrained minimization problem, for which there are special technoques.

Example 15 (Jacobian matrix computation). The system of measurement equations for range

measurements to three stations in locations s1, s2 and s3 is




y1

y2

y3


=



‖s1 −x‖
‖s2 −x‖
‖s3 −x‖


+




v1

v2

v3


 .

The Jacobian matrix required in Newton algorithm is

J(x) =
∂

∂x
h(x) =

∂

∂x



‖s1 −x‖
‖s2 −x‖
‖s3 −x‖


=




∂
∂x
‖s1 −x‖

∂
∂x
‖s2 −x‖

∂
∂x
‖s3 −x‖




=




− (s1−x)T

‖s1−x‖
− (s2−x)T

‖s2−x‖
− (s3−x)T

‖s3−x‖


 .

In this case, each row of the Jacobian matrix is the transpose of a unit vector pointing from the

presumed position x to a station.

2.3.1 Least squares error analysis

Let x̄ be the true location, ȳ the error-free measurements and ∆y the realized measurement error.
If the least squares method converges to solution x̂ = x̄+∆x, then the iteration step (2.3) length
at this point is zero, i.e.:

(JT J)−1JT (h(x̄+∆x)− (ȳ+∆y)) = 0.

The Jacobian matrix J is a function of x, but if ∆x is assumed small, J is almost constant in the
neighborhood and measurement equations can be linearized h(x̂) ≈ h(x̄)+ J∆x. We get

(JT J)−1JT (h(x̄)︸︷︷︸
=ȳ

+J∆x− (ȳ+∆y)) = 0

(JT J)−1JT J∆x− (JT J)−1JT ∆y = 0

∆x = (JT J)−1JT ∆y.

If the measurement errors are normally distributed, ∆y ∼ N(0,Σ), then it follows from
Theorem 4 (p. 10) that

∆x ∼ N
(
0,(JT J)−1JT ΣJ(JT J)−1

)
. (2.5)
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In the special case where measurement errors are distributed independently and identically,
i.e. Σ = σ2I, the location error simplifies to ∆x ∼ N

(
0,σ2(JT J)−1

)
. Then the covariance of

estimation error derived from measurement errors is simply the product of the variance σ2

of measurement errors and matrix (JT J)−1 which depends on measurement geometry. In the
context of GPS, this matrix is called DOP matrix (Dilution of Precision) [26, sections 6.A.1–2],
from which different DOP-numbers can be computed as follows:

Global/Geometric Dilution of Precision: GDOP =
√

tr(JT J)−1

Position Dilution of Precision: PDOP =
√

tr[(JT J)−1](1:3,1:3)

Horizontal Dilution of Precision: HDOP =
√

tr[(JT J)−1](1:2,1:2)

Vertical Dilution of Precision: V DOP =
√

[(JT J)−1](3,3)

Time Dilution of Precision: T DOP =
√

[(JT J)−1](4,4)

DOP figures are useful because they compress the quality of the satellite geometry into
one number. For example, the position error standard deviation can be estimated simply
by multiplying measurement error deviation with the PDOP figure. If measurements have
different deviations, however, then the error formula (2.5) does not simplify into DOP form,
see Computer Exercise 2.5.

Let us emphasize that in the derivation of formula (2.5), the error ∆x was assumed small so that
the measurement function h(x) could be linearized in the neighborhood of the estimate. The
more curved the measurement equations are, the poorer the estimate for location error obtained
this way is. (see Exercise 2.17)

2.4 Closed form solutions

Closed form solution, or direct solution, is a general name for various non-iterative algorithms,
where an initial guess is not needed to start the iteration. The advantage is that termination
conditions are not needed for iteration, and there is no fear of converging into a wrong solution.
If the problem has several solutions, the closed form solution gives them all. There are no
general closed form solutions capable of digesting any kind of measurement, but it has to be
derived separately for each measurement model, e.g. [4, 9, 24, 29].

In geometric solutions, every measurement is thought to define a surface in the parameter space
on which the measurement equation is fulfilled. For instance, range measurement defines a
spherical surface in three-dimensional location-space, range difference measurement defines a
hyperboloid, etc. The problem’s solutions are all the points where all measurement equations
are satisfied, i.e. where all measurement surfaces intersect. Another approach, of which the
Bancroft method is shown below as an example, is algebraic where different kinds of calculation
tricks are used for trying to find a special solution for the measurement equations.
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Closed form solutions are useful as initial guesses for iterative methods, but otherwise mostly
in theoretical research and problem visualization, because measurement errors are difficult to
model with them.

Example 16 (Bancroft method [4]). If all the measurements are pseudorange measurements

(for instance if only GPS-measurements are used), then a least squares solution∗ can be

computed in closed form as follows. Start from the system of measurement equations

‖s1 −x‖+b = y1

...

‖sn −x‖+b = yn.

Trick 1: Move the b’s to the right hand side of the equations and square both sides of the

equations. We then get n equations of the form:

‖si −x‖2 = (yi −b)2

⇔‖si‖2 −2sT
i x+‖x‖2 = y2

i −2yib+b2.

Remark. Squaring both sides of an equation can cause the solution to have several branches

that have to be treated separately. In this case this does not happen because the norm is non-

negative, and thus the left-hand side has to be as well.

Trick 2: Collect the squared terms into a new variable λ = ‖x‖2 − b2, then we get a linear

equation whose variables are x, b and λ:

2sT
i x−2yib = λ+‖si‖2 − y2

i .

Collect all the equations into a linear system and solve for x and b in least squares sense:




2sT
1 −2y1

...

2sT
n −2yn



[

x

b

]
=




1
...

1


λ+



‖s1‖2 − y2

1
...

‖sn‖2 − y2
n




[
x

b

]
=




2sT
1 −2y1

...

2sT
n −2yn




†


1
...

1




︸ ︷︷ ︸
=p

λ+




2sT
1 −2y1

...

2sT
n −2yn




†

‖s1‖2 − y2

1
...

‖sn‖2 − y2
n




︸ ︷︷ ︸
=q

⇔
[

x

b

]
= pλ+q =

[
d

f

]
λ+

[
e

g

]

where A† = (AT A)−1AT and vectors p and q can be computed from known quantities. The

original system of equations is thus fulfilled (in a least squares sense) if and only if

x = dλ+ e

b = f λ+g.
(2.6)

∗For over-determined systems, the solution is not the same as obtained with iterative methods, because the methods
minimize slightly different functions.
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Substitute these back into the definition of λ:

λ = ‖x‖2−b2 = ‖dλ+ e‖2 − ( f λ+g)2,

expand square terms and rearrange into

(‖d‖2 − f 2)λ2 +(2dT e−2 f g−1)λ+‖e‖2 −g2 = 0

which is a second degree polynomial with respect to λ and all other terms are known. Solve

roots and compute the corresponding x and b by substituting the roots back into formula (2.6).

Although there are two solution candidates, GPS satellite geometry is such that the other solu-

tion is in outer space and can be neglected.∗

2.5 Maximum likelihood

A more general form of measurement model The conditional probability density function is a
more general form of measurement model. It is denoted with p(y | x), which can be read “the
probability that y is measured in location x” (see Section 1.3.3). When x is considered as the
variable and measurements y as a constant in the expression, the function is then called the
likelihood function (or simply the likelihood) and it is interpreted such that the larger the value
of likelihood with measurements y and in location x, the better the location in question “fits”
the measurements. The likelihood function is sometimes denoted L(x|y) to emphasize that x is
considered a variable.

If the measurement model is given in equation form y = h(x)+ v, then it is easily written in
likelihood form because v = y−h(x) and the distribution of v is known, so

p(y | x) = pv(y−h(x)),

where pv is the known error distribution. Converting a likelihood function into a measurement
equation is however possible only in special cases. Maximum likelihood as a method is there-
fore more generally usable than the ones previously presented.

When the measurement model is in likelihood form and we obtain a measurement, the solution x̂

is sought such that its likelihood in light of the measurements is as large as possible: x̂ =
argmaxx p(y|x). To accomplish this, we can use nonlinear optimization methods, for instance
the Newton method.

Example 17. Consider a system of n measurements

y = h(x)+v

where the error v is normally distributed, v ∼ N(0,Σ). Remember that the density function of a

multidimensional normal distribution is

pv(z) = C exp

(
−1

2
zT Σ−1z

)

∗Unless the application is e.g. space rocket positioning. . .
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(the constant C = (2π)−n/2 det(Σ)−1/2 is not relevant here). Now the likelihood function is

p(y | x) = pv(y−h(x)) = C exp

(
−1

2
(y−h(x))T Σ−1(y−h(x))

)
.

Because the covariance matrix Σ is positive definite, the exponential function’s argument is

always non-positive. Therefore the solution with largest likelihood is found by minimizing the

expression (y−h(x))T Σ−1(y−h(x)), which is exactly the same as weighted least squares cost

function with weight matrix Σ−1.

Thus, for normally distributed errors, the maximum likelihood and weighted least squares

method are identical if the inverse of the measurement covariance matrix is used as the weight

matrix.

2.6 Bayesian solution

The likelihood function p(y | x) does not have a concrete interpretation as such. A more inter-
esting quantity would be the probability of the state (i.e. location) conditioned on obtained
measurements p(x | y). This quantity can be computed using Bayes’ formula:

p(x | y) =
p(x)p(y | x)

R

p(x)p(y | x)dx
(2.7)

where p(y | x) is the likelihood function of the measurement model and p(x) is prior distribu-

tion, independent of measurements, that gives an “educated guess” of possible values of x in
the form of a density function∗. When the obtained measurement y is substituted into Bayes’
formula, the result is the posterior distribution i.e. the conditional probability distribution for
state x.

Bayes’ formula gives a probability distribution p(x | y), and this is more informative than just
the state estimate x̂. The distribution contains all information we have on the state, based on
prior information and measurement. From the posterior distribution we can, when needed,
compute expectation or maximum likelihood estimate, covariance, confidence intervals, etc.
and it can be used as prior information for the solution of next time instant .

If densities are any more complicated, then the posterior density cannot usually be found analyt-
ically, and we resort to Monte Carlo -integration which works for arbitrary functions. More
about this in Section 3.5.

Example 18. Consider the one-dimensional example where we measure the location of an

object in a 10 meter long pipe. Let the measurement error distribution be N(0,32).

The likelihood function is now the normal density function (the constant coefficient is not

relevant)

p(y | x) = C exp

(
−(x− y)2

2 ·32

)

∗If we know nothing beforehand about x, the prior can be chosen to have uniform density.
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and a uniform distribution inside the pipe is used as prior:

p(x) =

{
1

10 if 0 ≤ x ≤ 10

0 otherwise

If measurement is, say y = 8 meters, then using Bayes formula (2.7) we get

p(x | y) =
p(x)p(8 | x)

R

p(x)p(8 | x)dx
=

p(x)C exp
(
− (x−8)2

2·32

)

R

p(x)C exp
(
− (x−8)2

2·32

)
dx

=





exp

(
− (x−8)2

18

)

R 10
0 exp

(
− (x−8)2

18

)
dx

if 0 ≤ x ≤ 10

0 otherwise

=

{
0.1788exp

(
− (x−8)2

18

)
if 0 ≤ x ≤ 10

0 otherwise
.

Prior information was used here to restrict the estimate to be inside the allowed area. If the

rough location of the object in the pipe had been known more precisely, this information could

also have been used as prior.

To the best of our knowledge, the p o s t e r i o r0 . 2 p r i o r
1 0 1 5 2 0m e a s u r e m e n t� 5 0 500 . 1obtained posterior distribution p(x|y)

now describes the object’s location prob-

ability in different parts of the pipe.

From the posterior we can compute

any estimates required, such as expec-

tation µ =
R

xp(x|y)dx ≈ 6.76 and vari-

ance σ2 =
R

(x − µ)2p(x|y)dx ≈ 2.122.

Compared to measurement y = 8, the

use of prior information thus moved the

estimate a little more to the center and reduced estimate’s standard deviation from 3 meters to

2.12 meters. If we were to get further independent measurements (assuming the object does is

not moving), then the currently solved posterior can be used as new prior, thus using all the

information from all the measurements optimally.

2.6.1 Bayesian error analysis

It was previously mentioned that a Bayesian location solution produces a probability density
function of the location, from which we can compute both location estimate and its mean square
error estimate

MSE =

Z

(x− x̂)(x− x̂)T p(x | y)dx

where the integral is usually computed numerically [28]. If the estimate x̂ is the expectation
E(x | y), then the mean square error is by definition the posterior covariance.
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Example 19. Here we show that for normally distributed measurements, the error covariance

is (nearly) the same as obtained in least squares method error analysis. Let measurement

errors’ distribution be v∼N(0,σ2I), and prior p(x) be uniform distributed∗. Now the likelihood

function is

p(y | x) = C exp

(
−(h(x)−y)T (h(x)−y)

2σ2

)

and thus

p(x | y) =
p(x)p(y | x)

R

p(x)p(y | x)dx
=

p(y | x)
R

p(y | x)dx

=
C exp

(
− (h(x)−y)T (h(x)−y)

2σ2

)

R

C exp
(
− (h(x)−y)T (h(x)−y)

2σ2

)
dx

= C2 exp

(
−(h(x)−y)T (h(x)−y)

2σ2

)
.

If we use the same linearization in the neighborhood of true location as in least squares analysis,

h(x) ≈ h(x̄)+ J(x̄−x) = ȳ+ J∆x = y−∆y+ J∆x, then we get

p(x | y) ≈C2 exp

(
−(J∆x−∆y)T (J∆x−∆y)

2σ2

)
,

which, unlike the corresponding least squares variance, depends on the realized measurement

error ∆y. For illustrative purposes, see what happens when ∆y = 0 (reasonable because the

measurement errors are zero centered):

p(x | y)|∆y=0 ≈C2 exp

(
−1

2

∆xT JT J∆x

σ2

)

= C2 exp

(
−1

2
∆xT

[
σ2(JT J)−1]−1

∆x

)

which is density function of distribution ∆x ∼ N(0, σ2(JT J)−1) i.e. the same result which was

obtained in previous section for least squares method. The Bayesian error estimates in this case

thus fluctuate around the one given by least squares, depending on the realized measurements.

∗The prior is often chosen to be a uniform density in whole space, which is a contradiction because a probability
density function’s integral should equal to 1. In practice, the uniformly distributed prior cancels out from the
computations, and it can be thought that we used prior that is uniformly distributed in an area “large enough" and
outside of it remains so little probability mass that it does not have any significant effect on the results. Another
approach is to use a Gaussian prior with covariance λI and let λ → ∞
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2.6.2 Confidence intervals

In one-dimensional case, confidence interval means an interval inside of which the estimate is
with e.g. 99% probability.∗ Confidence interval is usually centered around the estimate, but
nothing prevents setting it asymmetrically if needed. In multidimensional case, we usually use
confidence spheres or ellipsoids centered around the estimate, but again nothing stops us from
using area of any shape, as long as it contains the desired fraction of the distribution.

If the estimate’s distribution is known, then the probability of being inside a certain interval is
computed by integrating the distribution over the desired interval:

P(a ≤ x ≤ b | y) =
Z b

a
p(x | y)dx.

In the case of Gaussian distribution, we can use the precomputed values of the cumulative
distribution function and its inverse function, and get the familiar rules of thumb: inside ±2σ is
95% of the probability, inside ±3σ is 99.7% etc.

Even when the distribution of the estimate is not known, its variance can usually be approxim-
ated. Confidence intervals derived from the normal distribution do not hold in general, but we
can apply Chebyshev’s inequality, which gives a lower bound for how much probability mass
lies outside a certain interval when the distribution variance is σ2:

P(|x− x̂| ≥ λσ) ≤ 1

λ2 . (2.8)

For example, according to this formula, the probability mass lying over three sigmas away from
the average can be at most 1/9, which means that whatever the distribution is, there is always at
least 8/9 ≈ 89% of the probability inside the interval x̂±3σ.

The corresponding n-dimensional Chebyshev inequality is

P
(
‖x− x̂‖ ≥ λ

√
trace(Σ)

)
≤ 1

λ2

where Σ is the covariance matrix of the distribution. If variables have large correlations or they
have variances with different orders of magnitude, then the less simplified formula

P

(√
(x− x̂)T Σ−1(x− x̂) ≥ λ

√
n

)
≤ 1

λ2 (2.9)

gives a significantly tighter limit.

∗This is the Bayesian interpretation which we prefer over the traditional one in this context. Basically the question
is how randomness should be modeled mathematically. According to the frequentistic interpretation, probability
means the proportion of successes if a test is repeated “many” times. In the Bayesian interpretation probability is
a subjective measure that tells us how much we know (or think we know) about something.

The difference in the views is seen e.g. in the interpretation of the 99% confidence interval. In the frequentistic
sense the true location is some fixed value and in 99% of the cases we manage to compute the confidence interval
such that it contains the true location. The Bayesian interpretation is slightly more intuitive: we compute the
confidence interval just once, and the true location is considered random and falls inside our computed confidence
interval with 99% probability.
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Formula (2.9) can also be used for defining the equation for confidence ellipsoid, for instance the
95% confidence ellipsoid results from choosing on the right hand side of the equation 1/λ2 =
0.05, meaning that at most 5% of the probability is allowed to be outside the ellipsoid. Thus,
λ =

√
1/0.05, and the ellipsoid

E95% =
{

x | (x− x̂)T Σ−1(x− x̂) <
n

0.05

}

contains at least 95% of the probability mass (compare with Exercise 1.10 on page 20).

2.7 Conclusion and observations

• The static positioning problem can be formulated as either solving a nonlinear system
of equations or seeking maximum likelihood or the maximum of the Bayesian posterior.
Problems are solved either with standard optimization methods or with numerical integ-
ration [28], which we return to in Section 3.5.

• If measurement equations are nearly linear such that J(x) = h′(x) is nearly constant near
the solution (then it can be denoted only by J) and measurement errors are normally
distributed or can be modeled as such, then the least squares estimate and Bayesian mean
estimate are practically identical.

• Closed form solutions are harder to derive, and usually more sensitive to measurement
errors. They are however sometimes useful for searching initial guess or all the possible
solutions for the problem.

Exercises

2.1. The unknown to be solved is the two-dimensional position x =
[
x1 x2

]T
. Write the

measurement modelm when the measurement y is

(a) a noisy measurement of the coordinate x2,

(b) a noisy range from a fixed station at s =
[
s1 s2

]T
,

(c) a noisy angle to the station s so that zero angle points north, and the angle grows
clockwise,

(d) the difference of noisy ranges to stations s1 and s2.

2.2. An ideal INS unit measures the velocity vector in B-coordinates and the rotation vector p

defining the attitude of the B-frame with respect to the local L-frame. Write the measure-
ment equation assuming p is error-free.
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2.3. The unknown to be solved is the 2D position x. The measurement model is

y = h(x)+v =

[
‖[100 0]T −x‖
‖[0 50]T −x‖

]
+v, where v ∼ N(0,102I)

(a) Give the formulas for the residual p(x) and its derivative matrix J = p′(x) kaavat.

(b) Let the measurement be y =
[
108 46

]T
. What is the first step of the Gauss-Newton

method, if the starting point is x = [0 0]T ?

2.4. Derive the iteration step of the Weighted Gauss-Newton method (Algorithm 2), that is,
show that the step minimizes the cost p(x)T Σ−1p(x).

2.5. Derive the distribution of the error of the Weighted Gauss-Newton method (Algorithm 2)
similarly to Section 2.3.1. The weighting matrix is W and the measurement covariance Σ.

2.6. A radar measures the range to a target and the rate of the change of the range, i.e. the
radial velocity. The antenna is installed on a rotating rod, so that it’s coordinates at time t

are s(t) = [cost sint]T .
Write the measurement equation and its Jacobian matrix at time t with respect to the state
vector [r1 r2 r′1 r′2]

T .
(Note: be careful to distinguish between differentation with respect to time and different-
ation with respect to state.)

2.7. Given a linear measurement model y = Hx +v and a vector x0, derive an estimator that
minimizes the formula ‖y−Hx‖2 +‖x0 −x‖2.

2.8. Derive a closed-form solution (similar to Example 16 on page 30) for the measurement
system

‖s1 −x‖ = y1

...

‖sn −x‖ = yn.

Then apply your algorithm to the situation of Exercise 2.3.

2.9. With WLAN signals, for example, it is not often possible or reasonable to convert the
measured signal strength into a range measurement. Instead, in fingerprint methods, the
positioning system is first calibrated by choosing a set of locations pi, i = 1 . . .n, and
measuring the signal strength of all stations ai ∈ R

m in each calibration point. After
this, positioning is performed by comparing received measurements with the calibration
database.
Write the measurement model assuming that measurement noise is i.i.d. N(0,σ2) and
that the calibration database contains the accurate expected values of the measurements
at each calibration point. Consider also, what kind of algorithm would be needed to solve
position from your measurement model.
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2.10. Write the likelihood functions p(y | x) corresponding to the following measurement equa-
tions:

(a) y = x2 + v, v ∼ Uniform[−1,1]

(b) y = h(x)+ v, v ∼ Uniform[−1,1]

(c) y = 1 if ‖s−x‖ ≤ 100, otherwise y = 0

(d) y = 1 if ‖s−x‖+ v ≤ 100, v ∼ N(0,1), otherwise y = 0

(e) y = ‖s−x‖2, s ∼ N(ŝ, I)

Note that in (c) and (d), the measurement y is binary, so that its likelihood function
consists of just the two values p(0 | x) and p(1 | x).

2.11. The measurement model is y = ⌊x+ v⌋, where v ∼ N(0,(1/2)2) and ⌊·⌋ denotes the floor
function.

(a) What is the likelihood function of the measurement? Sketch graphs of the likelihood
as a function of y (with some fixed value of x), and as a function of x (with some
fixed y).

(b) What is the likelihood of n independent measurements?

(c) (optional Matlab exercise) The values of five independent measurements are
0,−2,−1,0 ja −1. Ignoring the floor function, the estimate of x would be the mean
of the measurements, i.e. −0.8.

Plot the joint likelihood over some suitable interval, for example [−2,1], and
estimate the maximum likelihood point from the graph.

2.12. Derive the Bayes formula (2.7) from the definition of conditional density (page 12).

2.13. When both the prior and likelihood are one-dimensional normal distributions, also the
posterior is a normal distribution. Derive its parameters.

2.14. Let the density of the prior be p(x) =

{
1/2 when −1 ≤ x ≤ 1

0 otherwise.
What is the mean and variance of this distribution?

The measurement model is p(y | x) =





(y+1)/2 when x ≥ 0 and −1 ≤ y ≤ 1

(1− y)/2 when x ≤ 0 and −1 ≤ y ≤ 1

0 otherwise.
Work out what this means, e.g. how the value of x affects the distribution of measured y.
Compute the posterior distribution, and based on that the Bayesian state estimate and its
variance.
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2.15. Consider the Chebyshevin inequality (2.8).

(a) If x is distributed according to a two-sided exponential distribution, p(x) = 1
2e−|x|,

its expectation value is 0 and standard deviation
√

2. Compute the 67% confidence
interval [−a, a] both accurately and using the Chebyshevin inequality.

(b) Give an example of a distribution that satisfies the equality P(|x− x̂| ≥ σ) = 1?

Computer exercises

2.16. Continues Exercise 2.3:

(a) Program the Newton method (Algorithm 1 on page 27), and run it using initial guess

x0 =

[
0
0

]
. Use the stopping tolerance δ = 10−3. What solution did you end up and

how many iteration steps were needed?

(b) Run algorithm again using initial guess x0 =

[
100
100

]
. What solution did you end up

and how many iteration steps were needed?

(c) Draw the residual norm in area x ∈ [−50,150], y ∈ [−50,150] with Matlab’s surf
command. Estimate how close to the correct solution initial guess should be so that
iteration finds correct solution.

2.17. Continues previous exercise.
Because all the measurements have the same variance σ2, location error covariance can
be estimated in the form σ2(JT J)−1.
Let true location be xtrue = [0 0]T . Location estimate distribution can be approximated
numerically with simulated measurements. Now y ∼ N([100 50],σ2I).

(a) Compute location estimate a thousand times with different measurement realiza-
tions, and compute covariance of the obtained estimates and its error compared to
computed covariance estimate σ2(JT J)−1 when σ = 1 and when σ = 10.

(b) Draw DOP values in area x ∈ [−50,150], y ∈ [−50,150] with Matlab’s surf

command. It may be necessary to cut off too large values from the figure, e.g. to
draw min(DOP,10).
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Chapter 3

Filtering

SIMO ALI-LÖYTTY

A filter uses all the earlier measurements in addition to the current ones for computing the
current state estimate. A basic prerequisite for the use of earlier measurements in positioning is
a dynamic state model

xk = fk−1(xk−1)+wk−1, (3.1)

which describes how current state depends on the previous ones. We use the board term state

instead of location, so that we can include for example velocities, clock biases, or other inter-
esting quantities as unknowns. In equation (3.1) we use the following notations: xk is the state,
fk is the state transfer function and wk is the state model error. The subscript k refers to time
instant tk. In this chapter, the state x of an observable is interpreted as a stochastic process
[3, 12, 16].

Definition 9 (Stochastic process). Let (Ω,F ,P) be a probability space and T a parameter set.

Stochastic process is a mapping x : Ω× T → R
n, such that for every fixed t ∈ T, x(·, t) is a

random variable, which is usually denoted xt or x(t).

Because state is a stochastic process, computation of the state estimate is done in two phases.
At each time instant, we find the state distribution conditioned on measurements:

pxk|y1:k
(xk|y1:k).

Here the notation y1:k is used for all measurements up to current time instant. Measurements
are also interpreted as realizations of random variables. Measurement equations are the same
as in the static case (2.1):

yk = hk(xk)+vk, (3.2)

where yk are the measurements, hk is measurement function and vk measurement error. In
addition to the state model and the measurement equations, we also need an initial state x0 for
the computation of the conditional distribution. Once we have the conditional state distribution,
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we can compute an estimate that is optimal with respect to some chosen criterion. These optimal
estimates are handled in Section 3.4. From the state distribution, we can compute also other
interesting quantities such as the covariance matrix of the estimation error.

In order to do estimation within reasonable time, we must be able to compute the state’s condi-
tional distribution recursively instead of reusing the whole measurement history at each time
instant. This can be done if we make some independence assumptions. The first assumption is
that errors wk and vk are mutually independent and white noise, which means that the errors inde-
pendent of past errors. For simplicity we also assume that the errors are zero-mean; if necessary
we can always change the state transfer- and measurement functions so that the errors become
zero-mean. Additionally we assume that errors wk and vk are independent of the initial state x0.
With these assumptions the state’s conditional distribution can be computed recursively. This is
covered in Sections 3.2 and 3.4.

Computing the conditional state distribution in a time series, from which we obtain the desired
estimate, is called filtering. Filtering has many advantages compared to a static location solu-
tion. First of all, we can use all the measurements nearly optimally independent of how many
measurements we get at each time instant. This enhances positioning accuracy considerably
compared to static positioning. Additionally, a location solution can also be computed even if
we have not got any measurement at the concerned time instant, because with the help of the
state model we can compute the distribution of the coming state without new measurements.

Filtering makes it easy to use possible other information in positioning such as map informa-
tion and sector/maximum range information of the base stations. Also, different kinds of error
models that take into account multipath effects or other faulty measurements can be used to
make positioning more fault tolerant. On the other hand, filtering has disadvantages also, first
of all in several cases computation of conditional distribution is not possible analytically and
although the computation can be done numerically it typically takes many times more computa-
tion time than static positioning. Additionally, filtering needs an initial state, the state dynamics
model, and the distributions of the errors, any of which we do not necessarily need in static posi-
tioning. Often these are not well known, and thus the model does not necessarily correspond to
reality as well as in static positioning.

As previously mentioned, we often cannot solve the conditional state distribution analytically.
However, if both the state model and the measurement equations are linear and the errors
and the initial state are normally distributed, then the state conditional distribution can be
computed recursively. The algorithm doing this is called the Kalman filter, named after Rudolf
E. Kalman [17]. The Kalman filter also solves a wider class of problems, as it remains the
best linear unbiased estimator (BLUE, Best Linear Unbiased Estimator) even when the distribu-
tions are non-Gaussian. The Kalman filter is presented in Section 3.2 from the BLUE point of
view, and in Exercise 3.5 you are asked to confirm that it also computes the state’s conditional
distribution. There also exists numerous approximations of the Kalman filter in cases where the
state model and/or the measurement equations are not linear; these non-linear Kalman filters
are presented in Section 3.3.

The general Bayesian filtering problem is presented in Section 3.4. Numerical methods for
solving the general Bayesian filtering problem are presented in Section 3.5.
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3.1 Constant velocity model

The state dynamics model (3.1), like the measurement model, is dependent on the observed
system. Clearly, for a stationary target, a suitable state model is different than for a cyclist
weaving through a crowd. The problem is that we rarely know the correct state model in advance.
This is why, for instance, the interactive multiple model method (IMM) uses a set of several
measurement/state models from which the filter tries to choose the best during runtime [34].
Another approach to this problem is adaptive filter that try to estimate and update the state
model parameters along with the state itself. It is good to remember that often we have to settle
for broad generalizations in the selection of the models, because the purpose is to get models
that work as good as possible and are simple enough. In this section, we introduce a simple but
commonly used model called the constant velocity model.

The constant velocity model has 6 state variables, the three-dimensional location and three-
dimensional velocity. The clock bias and its derivative required in satellite positioning can be
included in the same manner, as is done for example in the books [6, 10, 19, 27].

We model the state as a stochastic differential equation

dx = Fxdt +Gdβ, (3.3)

where

F =

[
0 I
0 0

]
ja G =

[
0
I

]
,

Here the velocity error is modeled as Brownian motion, denoted with β. The diffusion matrix
for the Brown motion β is chosen to be a simple diagonal matrix Qc = σ2

cI, where σ2
c describes

velocity error in the axis directions. To be more precise, σ2
c describes how much variance needs

to be added to the velocity error within one second in north-south, east-west and up-down
directions.

The solution of the stochastic differential equation (3.3) can be discretized into a state model
(see e.g.[25, s.171] or [12, s.200])

xk = Φk−1xk−1 +wk−1,

where

Φk−1 = e(tk−tk−1)F =

[
I ∆tI
0 I

]
.

The term ∆t = tk − tk−1 is the length of time step. State model error wk is white zero-mean
normally distributed noise, which is assumed independent of initial condition x0. The covari-
ance matrix Qk of the state model error is

Qk = V(wk−1) =
Z tk

tk−1

Φ(tk, t)GQcGT Φ(tk, t)
T dt =

[
1
3∆t3I 1

2∆t2I
1
2∆t2I ∆tI

]
σ2

c .
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3.2 The Kalman filter

The Kalman filter solves the filtering problem where the state model and the measurement
model (measurement equations) are linear. Then the state model is

xk = Φk−1xk−1 +wk−1, (3.4)

where xk is the process state, Φk is the state transfer matrix and wk is the state model error,
which is assumed zero-mean white noise and independent of the errors in the measurements
and the initial state. The covariance matrix of the state model error is denoted with Qk. The
measurement model is

yk = Hkxk +vk, (3.5)

where yk are the measurements, Hk is the measurement matrix (or system matrix) and vk is
the measurement model error, which is assumed zero-centered white noise and independent of
the errors in the measurements and the initial state. The covariance matrix of the measurement
model error is denoted with Rk, which is assumed positive definite. In addition to the state
model and the measurement model, the Kalman filter needs initial state x0. We denote the the
expectation of the initial state with vector x̂0 and the covariance matrix with constant matrix P0,
which is assumed positive definite. The hat notation refers to an estimator, which is a function
of the measurements. In the case of x̂0, the estimator is a constant random variable, because
at time instant t0 we do not yet have any measurements. Covariance matrix P0 can also be
interpreted as a mean square error (MSE) matrix E

(
e0eT

0

)
, where e0 = x0 − x̂0.

The purpose of the Kalman filter is to solve a best linear unbiased estimator for state xk. Because
of the independence assumptions, this can be done recursively and then the estimator can be
written as

x̂k =
[

Jk−1 Kk

][ x̂k−1

yk

]
, (3.6)

where x̂k−1 is the best linear unbiased estimator for state xk−1 at time instant tk−1. The corres-
ponding mean square error matrix is denoted Pk−1. The measurements at time instant tk are
denoted with random variable yk.

In the remainder of this section, we derive such matrices Jk−1 and Kk that (3.6) becomes the best
linear unbiased estimator, i.e. the Kalman filter. The best here means that the mean square error
of the estimator E(eT

k ek) = tr(E(ekeT
k )) would be as small as possible. This estimator is called

the least squares estimator (MSE-estimator). Because the estimator is required to be unbiased,
we get

E(xk) = E(x̂k) =
[

Jk−1 Kk

][ E(x̂k−1)
E(yk)

]
.

Using the unbiasedness of the estimator x̂k−1, the state model (3.4) and the measurement
model (3.5) we get

Φk−1 E(xk−1) = Jk−1 E(xk−1)+KkHkΦk−1 E(xk−1).
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This equation needs to hold for any expectation E(xk−1), thus

Jk−1 = Φk−1 −KkHkΦk−1. (3.7)

The best linear unbiased estimator of state xk which does not use measurements at the current
time instant tk is called the prior estimator. In other words, the prior estimator is the same
form as the estimator in formula (3.6), but with matrix Kk set to zero. Then the prior estimator,
denoted by a minus superscript, is according to formula (3.7)

x̂−k = Φk−1x̂k−1. (3.8)

The mean square error matrix of the prior estimator is thus

P−
k = E

(
(xk − x̂−k )(xk − x̂−k )T

)

(3.4)
= E

(
(Φk−1ek−1 +wk−1)(Φk−1ek−1 +wk−1)

T
)

indep.
= Φk−1 E

(
ek−1ek−1

T
)

ΦT
k−1 +E

(
wk−1wT

k−1

)

= Φk−1Pk−1ΦT
k−1 +Qk−1.

The estimator in formula (3.6) that also uses measurements at time instant tk is called the
posterior estimator. The error of the posterior estimator is

ek = xk − x̂k

= xk − (Φk−1 −KkHkΦk−1)x̂k−1 −Kkyk

(3.5)
= (I−KkHk)(xk − x̂−k )−Kkvk

(3.9)

According to the assumption, the error of the prior estimator e−k = xk− x̂−k is independent of the
measurement error vk, so that the mean square error matrix of the posterior estimator is

Pk = E
(
ekeT

k

)

(3.9)
= (I−KkHk)P

−
k (I−KkHk)

T +KkRkKT
k

unbiased,ex.3.2
= P−

k −P−
k HT

k (HkP−
k HT

k +Rk)
−1HkP−

k

+(KkB−P−
k HT

k B−1)(KkB−P−
k HT

k B−1)T ,

(3.10)

where B = (HkP−
k HT

k +Rk)
1
2 . The trace of Pk is at minimum when the trace of the matrix

(KkB−P−
k HT

k B−1)(KkB−P−
k HT

k B−1)T (3.11)

is minimized, because the other terms in the sum do not depend on matrix Kk. The trace of
matrix (3.11) is smallest possible when KkB−P−

k HT
k B−1 = 0 (Exercise 3.3), and the solution

to this equation is

Kk = P−
k HT

k (HkP−
k HT

k +Rk)
−1. (3.12)

This matrix is called the Kalman gain. Combining the results, we get the Kalman filter estimator

x̂k = x̂−k +Kk(yk −Hkx̂−k ), (3.13)
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where the prior estimator has been given in formula (3.8) and the Kalman gain in formula (3.12).
The mean square error matrix of this estimator (3.10) can be written as

Pk = (I−KkHk)P
−
k
.

The Kalman filter has been given in compact form in Algorithm 3.

In formula (3.13), the difference between the measurement yk and the predicted measurement
ŷk = Hkx̂−k , i.e. yk −Hkx̂−k is called the innovation. The mean square error matrix of the meas-
urement prediction (the covariance matrix of the innovation) is HkP−

k HT
k + Rk (Exercise. 3.1).

The use of the innovation is almost the only way of monitoring the quality of the filter solution
during runtime. Because the covariance matrix of the innovation is known, we can do statis-
tical tests on whether the realized measurement is probable or not. Many robust filters do these
kinds of tests and if the result is that the measurement is unlikely, it is either not used at all or
it is given less weight than the “likely” measurements. Additionally, many adaptive filters use
innovations to define or update filter parameters during runtime, for instance the covariances of
the errors [5, Chapter 11].

Algorithm 3 The Kalman filter

• The state model: xk = Φk−1xk−1 +wk−1, V(wk−1) = Qk−1

• The measurement model: yk = Hkxk +vk, V(vk) = Rk

• The measurements: y1:m = {y1,y2, . . . ,ym}
• The initial state estimate and its MSE: x̂0 and P0

1. Set k = 1.

2. • The prior estimate: x̂−k = Φk−1x̂k−1

• The prior MSE: P−
k = Φk−1Pk−1ΦT

k−1 +Qk−1

• The Kalman gain: Kk = P−
k HT

k (HkP−
k HT

k +Rk)
−1

• The posterior estimate: x̂k = x̂−k +Kk(yk −Hkx̂−k )

• The posterior MSE: Pk = (I−KkHk)P
−
k

3. Stop if k = m, otherwise set k = k +1 and get back to step 2.

Example 20 (A Kalman filter). Figure 3.1 shows an example of a situation where a two-

dimensional constant velocity model has been used, see Section 3.1. Constant velocity model

satisfies assumptions of Kalman filter. The parameters used in the example are as following:

x0 =
[

0 0 5 0
]T

, P0 =

[
102I 0

0 32I

]
,

Φ =

[
I I
0 I

]
, Q =

[
1
3 I 1

2I
1
2 I I

]
,

H =
[

I 0
]

and R =

[
302 0
0 502

]
.

(3.14)
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The true route over one minute period has been drawn with a black dashed line. The positioning

system gives location measurements according to the measurement model at one second inter-

vals (red dots linked with narrow lines). The Kalman filter uses the locations as measurements,

and the resulting state estimate is drawn with a continuous blue line.

S t a r t
1 0 0 m

S t a r t
Figure 3.1: Example of a Kalman filter applied to two-dimensional location measurements.

3.3 Nonlinear Kalman filters

The Kalman filter is very popular for linear systems, because it is relatively easy to compute
and requires few assumptions. For this reason, there are several methods of applying something
similar to the Kalman filter also to nonlinear systems (3.1), (3.2). In this section, we introduce
the basic ideas on which most Kalman filter extensions are based. First, we give a slightly
generalized version of the BLU-estimator. Let

E

([
xk

yk

])
=

[
x̄k

ȳk

]
, and V

([
xk

yk

])
=

[
Pxxk

Pxyk

Pyxk
Pyyk

]
.

Now the BLU-estimator of state xk is [5]

x̂k = x̄k +Pxyk
P−1

yyk
(yk − ȳk),

E((xk − x̂k)(xk − x̂k)
T ) = Pxxk

−Pxyk
P−1

yyk
Pyxk

.
(3.15)

Nonlinear extensions of the Kalman filter try to solve the unknown quantities of equation (3.15),
x̄k, ȳk,Pxxk

,Pxyk
= PT

yxk
,Pyyk

by using some approximation. For these kinds of algorithms we use
a general name nonlinear Kalman filter, whose algorithm has been given on page 47. Next,
we treat two commonly used nonlinear Kalman filters in more detail, the so-called extended
Kalman filter (EKF) and the unscented Kalman filter (UKF) [34].

When using nonlinear Kalman filters, it is good to remember that they do not actually even
approximate the optimal solution which is handled in Section 3.4. For this reason, EKF for
instance may give completely false results like in the example on page 55. Nevertheless, in many
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practical application nonlinear Kalman filters work fairly well (see Exercise 3.10) and they
often require significantly less computation than the numerical approximations of the general
Bayesian filter, which are handled in Section 3.5. Because of these reasons, nonlinear Kalman
filters are popular in engineering.

Algorithm 4 Nonlinear Kalman filter (EKF and UKF)

• The state model: xk = fk−1(xk−1)+wk−1, V(wk−1) = Qk−1

• The measurement model: yk = hk(xk)+vk, V(vk) = Rk

• The initial state estimate, its MSE and the measurements: x̂0, P0 and
y1:m = {y1,y2, . . . ,ym}

1. Set k = 1.

2. • The prior estimate: x̂−k = x̄k

• The prior MSE: P−
k = Pxxk

• The posterior estimate: x̂k = x̂−k +Pxyk
P−1

yyk
(yk − ȳk)

• The posterior MSE: Pk = Pxxk
−Pxyk

P−1
yyk

Pyxk
,

3. Stop, if k = m, otherwise set k = k +1 and go back to step 2.

3.3.1 Extended Kalman filter

The extended Kalman filter is a nonlinear Kalman filter that is based on the first order Taylor
approximations of the state model and the measurement model.

• The state model approximation:
xk ≈ fk−1(x̂k−1)+Φk−1(xk−1 − x̂k−1)+wk−1 where Φk−1 = f′k−1(x̂k−1) and

• The measurement model approximation:
yk ≈ hk(x̂

−
k )+Hk(xk − x̂−k )+vk, where Hk = h′

k(x̂
−
k ).

Then the unknown quantities in Algorithm 4 are easily computed:
[

x̄k

ȳk

]
=

[
fk−1(x̂k−1)

hk(x̂
−
k )

]
, and

[
Pxxk

Pxyk

Pyxk
Pyyk

]
=

[
P−

k P−
k HT

k

HkP−
k HkP−

k HT
k +Rk

]
,

where P−
k = Φk−1Pk−1ΦT

k−1 +Qk−1. It is also possible to use a higher order Taylor approxima-
tion of the quantities listed above. On the other hand, higher order approximations often need
more restrictive assumptions about the prior and posterior distributions, for instance normality,
so that the quantities in formula (3.15) can be computed. Additionally, the analytical computa-
tion of even a first order Taylor approximation is difficult and in some cases impossible. This
the reason for developing nonlinear Kalman filters that do not require the derivative of the state
transfer function or the measurement function, such as the UKF in the next section.
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3.3.2 Unscented Kalman filter

Unscented Kalman filter (UKF) is a derivative-free nonlinear Kalman filter based on a numer-
ical integration method called the unscented transformation (UT). The UT approximates the
expectation of function f(x) using the so-called σ-points {χ0, . . . ,χN−1} when the distribution
of random variable x is known. This numerical integration method can be written as

E(f(x)) =

Z

f(x)p(x)dx ≈
N−1

∑
i=0

ωif(χi), (3.16)

where weights ωi and sigma-points χi are selected such that the approximation is accurate for
certain degree polynomials f(x) when random variable x is normally distributed.

Let n be the state dimension, x̂ be the expectation of random variable x and the covariance
matrix be P. Then the generally used σ-points selection contains 2n+1 points which are

Index (i) Weight (ωi) σ-point (χi)

0 κ
κ+n

x̂

1, . . . ,n 1
2(κ+n)

x̂+
√

κ+n
√

Pei

n+1, . . . ,2n 1
2(κ+n) x̂−

√
κ+n

√
Pei−n,

(3.17)

where
√

P means such a matrix which has the property that
√

P
√

P
T

= P. Parameter κ > −n is
a freely selectable constant. With these σ-points and weights, the approximation (3.16) is exact
if the random variable x is normally distributed and function f(x) is a third degree polynomial.
In addition, the choice κ = 3−n minimizes the error of the integral approximation of a fourth
degree polynomial and it is therefore commonly used, see Exercise 3.6.

Let now {χ0k−1, . . . ,χ(N−1)k−1
} be the σ-points generated based on the posterior distribution at

time instant tk. Then the unknown quantities of Algorithm 4 can be computed:

x̄k =
N−1

∑
ik−1=0

ωik−1fk−1(χik−1), ȳk =
N−1

∑
ik−1=0

ωik−1hk(χik|k−1
),

Pxxk
=

N−1

∑
ik−1=0

ωik−1(fk−1(χik−1)− x̄k)(fk−1(χik−1)− x̄k)
T +Qk−1,

Pxyk
=

N−1

∑
ik−1=0

ωik−1(χik|k−1
− x̄k)(hk(χik|k−1

)− ȳk)
T and

Pyyk
=

N−1

∑
ik−1=0

ωik−1(hk(χik|k−1
)− ȳk)(hk(χik|k−1

)− ȳk)
T +Rk,

where χik|k−1
= fk−1(χik−1). Another way is to generate these σ-points of the prior distribution

from a prior distribution whose expectation is x̄k and whose covariance matrix is Pxxk
, then the

results are a little different from the previous implementation.
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3.4 Bayesian filter

In this section, we use the state model, the measurement model, and the initial state as well as
the usual independence assumptions introduced at the beginning of the chapter on page 40. The
aim in Bayesian filtering is to determine the state’s conditional density function conditioned on
the measurements,

pxk|y1:k
(xk|y1:k)

△
= p(xk|y1:k).

The abbreviated notation is used where it is easy to see from the context what the notation
means. Assume that the state’s conditional density function at the previous time instant is
p(xk−1|y1:k−1). The conditional density function for the current instant conditioned on previous
measurements, p(xk|y1:k−1), can be determined with the help of the Chapman-Kolmogorov
equation

p(xk|y1:k−1) =

Z

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

This distribution is called the prior distribution. The conditional density function p(xk|xk−1) can
be derived from the state model

p(xk|xk−1)
(3.1)
= pwk−1(xk − fk−1(xk−1)).

Now, by Bayes’ rule and the independence assumptions of the errors, we can derive a formula
for the current state’s conditional density function conditioned on current and previous meas-
urements:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

R

p(yk|xk)p(xk|y1:k−1)dxk

.

This distribution is called the posterior distribution. The first term of the numerator

p(yk|xk) = pyk=yk|xk
(yk|xk)

(3.2)
= pvk

(yk −hk(xk))

is called the likelihood. Note that this is not a probability density function. The density function
of the posterior distribution is proportional to the product of the prior distribution and the like-
lihood. The denominator is the normalization constant p(yk|y1:k−1), which is the conditional
density function of the new measurement conditioned on previous measurements. From this the
filtering can be continued recursively.

As already mentioned, in linear-Gaussian cases the Kalman filter is the exact solution for this
filtering problem, see Exercise 3.5. Nevertheless, in the general case the posterior distributions
cannot be analytically solved. Because of this, several numerical methods for the approximation
of the posterior distribution have been developed. These methods are described in Section 3.5.
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Optimal estimator

In practical applications, we usually are interested in finding an optimal state estimator and
an estimate of the estimation error, rather than the full Bayesian posterior distribution. By
“estimator” we mean a function whose arguments are the measurements and the initial state,
and by “optimal” we mean that the estimator minimizes the expectation of some scalar cost
function L(xk − x̂k), in short

x̂
opt
k = argminx̂k

E(L(xk − x̂k)).

The cost function can be chosen with many different ways and thus we get different kinds of
optimal estimators. It is usually assumed, as we shall, that the cost function is non-negative and
that it has the value zero in the origin. Because

E(L(xk − x̂k)) = E(E(L(xk − x̂k)|y1:k)), (3.18)

it suffices to find an estimator that minimizes the conditional expectation

x̂
opt
k = argminx̂k

E(L(xk − x̂k)) = argminx̂k
E(L(xk − x̂k)|y1:k = y1:k), (3.19)

for all values of the measurements y1:k. A common estimator is the least squares estimator, that
we get by minimizing the expectation value of the square of the error norm, that is,

L(xk − x̂k) = ‖xk − x̂k‖2. (3.20)

It can be shown that the estimator corresponding to the cost function (3.20) is the same as the
expectation of the posterior

x̂MSE
k = E(xk|y1:k = y1:k),

(see Exercise 3.7). In fact, this same cost function is used for deriving the Kalman filter
(Section 3.2). It is however good to remember that the Kalman filter minimizes the expecta-
tion (3.18) among linear estimators only, whereas the optimal estimators handled in this section
minimize the conditional expectation (3.19) from the set of all estimators, not just linear ones.

Another common estimator is the maximum a posteriori, i.e. MAP estimator, then accordingly
the estimator is

x̂MAP
k = argmaxxk

p(xk|y1:k).

The MAPestimator minimizes the so-called hit or miss cost function L = limδ↓0 Lδ, where

Lδ(xk − x̂k) =

{
1, ‖xk − x̂k‖ ≥ δ

0, ‖xk − x̂k‖ < δ
,
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3.5 Numerical methods for filtering

This section presents some numerical methods for solving filtering problems. A hallmark for
a good numerical approximation method is that there is a way to control the trade-off between
accuracy and computational load. for example parameter N that can be increased in order to
make the solution approach the correct one. In numerical Bayesian filtering, this parameter
often is the number of the pairs {pi

k(x),ω
i
k} (i = 1, . . . ,N), with which we approximate the

density function of the posterior distribution

p(xk|y1:k) ≈
N

∑
i=1

ωi
k pi

k(xk).

For instance, for the particle filter (Section 3.5.2) and for the point mass filter

pi
k(xk) = δ(xk − xi

k),

where δ is the delta function (Dirac’s delta measure). For the grid filter, the function pi
k(xk)

is the characteristic function of set Ai and for the Gaussian mixture filter pi
k(xk) is the density

function of a normal distribution.

The biggest difference between the particle filter and the point mass filter is that in the particle
filter particles {xi

k} are chosen randomly whereas in the point mass filter they are deterministic-
ally set. The particle filter is based on Monte Carlo integration, described next.

3.5.1 Monte Carlo integration

Monte Carlo integration is based on the law of large numbers.

Theorem 7 (Strong law of large numbers). Let z1,z2, . . . ,zn be independent identically distrib-

uted random variables. Then∗

P

(
lim
n→∞

1

n

n

∑
i=1

zi = µ

)
= 1

if and only if the distribution has an expectation value and E(z) = µ.

Write the integral to be computed in the form

I =

Z

g(z)dz =

Z

g(z)

f (z)
f (z)dz

△
=

Z

h(z) f (z)dz, (3.21)

where f (z) > 0 is the density function of a random variable z. The random variable z can be
chosen almost freely, so it is good to pick one from which it is convenient to draw random
samples. Then according to the Strong law of large numbers (above), the sample mean

h̄n =
1

n

n

∑
i=1

h(zi) (3.22)

∗Then it is said that the sample mean converges almost surely. From almost certain convergence follows convergence

in the probability sense, from which furthermore follows convergence in the distribution sense.
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converges almost surely towards integral I (3.21). If E(h(z)2) exists, then the variance of random
variable h̄n can be approximated

V(h̄n) =
1

n

Z

[h(z)−E(h(z))]2 f (z)dz ≈ 1

n2

n

∑
i=1

(
h(zi)− h̄n

)2 △
= σ2

h̄n
. (3.23)

Additionally, it can be shown that the quotient (compare to the central limit theorem)

h̄n −E(h(z))√
σ2

h̄n

approaches in a distribution sense the distribution of the random variable N(0,1).

Example 21 (Monte Carlo integration). Let a random variable be z ∼ N(0,1) and

g(z) =

{
3
4(1− z2), |z| ≤ 1
0, |z| > 1

When the number of the simulated random variables is n = 104, one realization of Monte Carlo

approximation of integral
R

g(z)dz = 1 is about 1.005, equation (3.22) and the approximation

of the variance of this approximation is about 3.045 · 10−5 (3.23). The density function of the

normal distribution corresponding to these values is visualized on the left in Figure 3.2. In the

background of the density function there has been drawn a histogram of a thousand such Monte

Carlo simulations. The histogram resembles a normal distribution whose expectation is one,

just like in theory. In Figure 3.2 on the right is a visualization of the error of the Monte Carlo

integration compared to the number n of random draws used. The line in the plot reflects the

theoretic convergence rate O(n−
1
2 ).
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Figure 3.2: Results of the Monte Carlo simulation.
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3.5.2 Particle filter

In this section, we describe different variants of particle filters [34]. A particle filter is based on
the Monte Carlo method and it approximates prior and posterior distributions using samples,
called particle clouds, of the distributions in question. One particle filter is given as the
Algorithm 5. In fact, the algorithm in question can be considered as an algorithm for a family
of particle filters, because by choosing different model parameters we get different kinds of
particle filters. These choices are discussed in the next section. Additionally, it is good to
remember that this is not the most general formulation for particle filter but there exists even
more general or in some way differing particle filters.

Algorithm 5 Particle filter

• The state model: xk = fk−1(xk−1)+wk−1, pwk−1(w)

• The measurement model: yk = hk(xk)+vk, pvk
(v)

• The initial state and the measurements: px0(x) and y1:m = {y1,y2, . . . ,ym}
• The number of particles and the proposal distributions: N and g(xk|xi

k−1,yk)

In this algorithm i = 1, . . . ,N.

1. • Simulate samples xi
0 from distribution px0(x)

• Set ωi
0 = 1

N
and k = 1

2. • Simulate particles xi
k from distributions g(xk|xi

k−1,yk)

• Set ωi
k = ωi

k−1

pvk
(yk−hk(x

i
k
))pwk−1

(xi
k
− fk−1(x

i
k−1))

g(xi
k|xi

k−1,yk)

3. Normalization: ωi
k =

ωi
k

∑N
i=1 ωi

k

4. Compute point estimates, e.g.:

• The posterior expectation: x̂k ≈ ∑N
i=1 ωi

kxi
k

• The covariance matrix of the posterior: Pk ≈ ∑N
i=1 ωi

k

(
xi

k − x̂k

)(
xi

k − x̂k

)T

5. Resampl when needed:

• Simulate particles xi
k from distribution ∑k

i ωi
kδ(xk − xi

k)

• Set ωi
k = 1

N

6. Stop, if k = m, otherwise set k = k +1 and go back to Step 2.

Sequential importance sampling (SIS) is a simple particle filter and it is obtained from
Algorithm 5 when the resampling (Step 5) is left out. However, this eventually causes all the
weight to accumulate in just a few particles. Then all the other weights are practically zero,
and a lot of computation capacity has to be spent without having any effect on the approx-
imation of the posterior distribution. Because of this, in the SIR filter (sampling importance
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resampling) the resampling is done at every step. Additionally, prior distributions p(xk|xi
k−1)

are used as proposal distributions g(xk|xi
k−1,yk), so that the formula of the weights in step 2 of

the algorithm simplifies into ωi
k = pvk

(yk −hk(x
i
k)).

In the SIS filter, resampling is not done at all, whereas in the SIR filter it is done at every time
instant. Generally speaking, neither of these is the optimal way to operate. Different heuristics
have been developed to decide whether it is worth resampling or not. One of these ways is to
compute an approximation for the number of effective samples

Neff ≈
1

∑N
i=1(ω

i
k)

2
,

and resample if it is smaller than a certain threshold value.

The resampling can be done in many ways. Algorithm 6 introduces systematic resampling. A
computationally heavier resampling algorithm (so-called multinomial resampling) is obtained
when in the systematic resampling the algorithm comparison points zi ∼Uniform(0,1] are simu-
lated each time. Systematic resampling takes one sample from each interval

(
i−1
N

, i
N

]
. This

guarantees that if the weight of a particle is ω
j
k ≥ l

N
, where l is a natural number, then the

corresponding particle appears at least l times in the resampled particle set. This also holds for
the so-called stratified resampling where one comparison point is simulated from each interval(

i−1
N

, i
N

]
and otherwise it functions the same as Algorithm 6.

Algorithm 6 Systematic resampling

• Particles and weights {xi
k,ω

i
k}, where i = 1, . . . ,N.

1. Simulate the starting point: z1 ∼ Uniform(0, 1
N
] and set i = 1.

2. Compute current comparison point zi = z1 +(i−1) 1
N

3. Set ωi
k = 1

N
and xi

k = x
j
k, where j is set in such a way that ∑

j−1
l=1 ωl

k < zi ≤ ∑
j
l=1 ωl

k.

4. Stop, if i = N, otherwise set i = i+1 and go back to Step 2

The proposal distribution g(xk|xi
k−1,yk) was mentioned earlier in connection with the SIR filter,

which uses prior distributions p(xk|xi
k−1) as proposal distributions. Prior distribution is a

popular choice for the proposal distribution, although they are not the optimal choice when
an effective sample size is considered. The optimal choice would be to use posterior distri-
butions p(xk|xi

k−1,yk) as proposal distributions. However, usually they are not known∗, and
then we often end up using either the prior distributions or the approximations of the posterior
distributions which can be computed for example with the nonlinear Kalman filter (Section 3.3).

Example 22 (PF and EKF). Figure 3.3 shows a positioning example using particle filter (PF)

and extended Kalman filter (EKF). The system state is four-dimensional, two location coordi-

nates and two velocity coordinates, and state model parameters Φ and Q are the same as in

∗Because they are the ones we are seeking.
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the Kalman filter example (3.14). A measurement is taken at one second intervals as a range

measurement from two base stations, which have also been drawn in the figure. Then the meas-

urement model is

yk =

[
‖xbs1 −xk‖
‖xbs2 −xk‖

]
+vk,

where xbs1 =

[
−250

0

]
, xbs2 =

[
250
0

]
and vk ∼ N(0,102I). The initial state of the system is

x0 ∼ N







−150
−30

3
3


 ,




202 0 0 0
0 202 0 0
0 0 52 0
0 0 0 52





 .

The location estimates given by the filters have been drawn in the figure, which are in

this case approximations of the expectations of the posterior distributions. At time instants

{0,10,20,30,40} the ellipses corresponding to the covariance matrices given by the EKF have

been drawn. The ellipses are defined in such a way that if the posterior distributions were

normal with parameters given by the EKF, then the ellipse would represent the level curve of

the density function of the posterior distribution such that with about 68% probability the state

is inside the ellipse.

The particle filter used is the SIR filter f i l t e rT r u e r o u t eP a r t i c l e f i l t e rE x t e n d e d K a l m a n f
S t a r t5 0 m

Figure 3.3: Figure of the situation of the

example, more detailed explana-

tion is found in the text.

(p. 54) with a million particles. The particle

clouds have been visualized at time instants

{0,10,20,30,40} with a hundred particles,

which have been got from the original set

of one million particles by using system-

atic resampling (algorithm 6). Because the

number of particles is relatively large, it can

be thought that the particle filter represents

some kind of reference filter in the example.

From the figure we see that at the last time

instant (t = 40), the posterior distribution

clearly has two separate peaks. The EKF has

started following one of these peaks, which is

very characteristic for the EKF. In this case

the EKF has “chosen” the wrong peak and

then we say that the EKF has gone astray.

Although the EKF gives completely false results, the covariance matrix shows that the EKF

trusts very much the estimate in question. After this, the EKF does not easily “find” the correct

location even when measurements from additional sources become available and the bimodal

(two-peaked) posterior becomes unimodal. As a rule of thumb, we can say that it is worth

applying the EKF to the system if the posterior distributions resemble normal distribution i.e.

they are unimodal and the tails of the distribution rapidly decay towards zero, but in this kind of

two-peaked case applying EKF starts to be quite risky. This bimodal situation would completely
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change if there were range measurements from one more base station or if the route did not go

near the line connecting the base stations.

Exercises

3.1. Show that the mean square error matrix of prediction ŷk = Hkx̂−k of measurement yk =
Hkxk +vk is HkP−

k HT
k +Rk.

3.2. Assume that matrix R is symmetric positive definite and matrix P is symmetric positive
semi-definite. Show that

(I−KH)P(I−KH)T +KRKT = P−AAT +(KB−A)(KB−A)T ,

where B = (HPHT +R)
1
2 and A = PHT B−1.

3.3. Let A be an arbitrary real matrix. Show that the zero matrix is the unique solution for the
problem argminA tr(AAT ).

3.4. For a partitioned matrix it holds that (check it)

[
A B
C D

]−1

=

[
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

]
,

if the required inverse matrices exist. On the other hand, we know that the inverse matrix
of a symmetric matrix is symmetric. Applying this information to matrix

[
P−1 HT

H −R

]

may be of help in the next task. Additionally, let A and B be symmetric positive definite
matrices. Now, if A ≤ B then B−1 ≤ A−1 [14, Corollary 3.3.4.].

(a) Show that (P−1 +HT R−1H)−1 = P−PHT (HPHT +R)−1HP, when P > 0 and R > 0.

(b) Show that in linear Gaussian case posterior covariance matrix is “increasing”. That
is, show that if 0 < P1 ≤ P2 then 0 < P+

1 ≤ P+
2 , where P+

i = (I−KH)Pi and K =
PHT (HPHT +R)−1.

3.5. (a) Let xk−1 ∼ N(x̂k−1,Pk−1), wk−1 ∼ N(0,Qk−1) and vk ∼ N(0,Rk) be independent
random variables. What is the distribution of the random variable

[
xk

yk

]
=

[
Φk−1 I 0

HkΦk−1 Hk I

]


xk−1

wk−1

vk



?
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(b) Let
[

x

y

]
∼ N

([
x̄

ȳ

]
,

[
Σxx Σxy

Σyx Σyy

])
,

show that x|y = y ∼ N(x̄+ΣxyΣ−1
yy (y− ȳ),Σxx −ΣxyΣ−1

yy Σyx).

(c) Apply the result of part (b) to the distribution from part (a), and compare the
obtained result with the BLU-estimator introduced in Section 3.2.

3.6. Show that in one-dimensional case, the unscented transformation using the points given
in formula (3.17) make the approximation (3.16) exact for a third degree polynomial.
Naturally, here p(x) is the density function of distribution N(µ,σ2). On what grounds is
the choice κ = 2 reasonable? (Hint:

R

x4 p(x)dx = µ4 +6µ2σ2 +3σ4)

3.7. Show that the posterior expectation minimizes the expectation E(‖xk − x̂k‖2 | || y1:k =
y1:k).

Computer exercises

3.8. Implement the Kalman filter (KF), whose specification is

% [X,P] = kalman(x0,P0,F,Q,Y,H,R)

%

% x_{k+1} = Fx_{k}+w

% y_{k} = Hx_{k}+v

%

% IN: x0 = initial state at time 0 (R^n)

% P0 = initial covariance matrix

% F = state transformation matrix

% Q = covariance matrix of process noise (w)

% Y = measurements Y=[y_1,...,y_k](R^(m \times k),

% H = ’’measurement model’’

% R = covariance matrix of measurements errors (v)

%

%OUT: X = [x_0,x_1,...,x_k], where x_i is estimate at time i.

% P(:,:,i) = MSE matrix at time i

function [X,P] = kalman(x0,P0,F,Q,Y,H,R)

There are data in web page http://www.students.tut.fi/~aliloytt/menetelmat/

harkat.html that you can test your filter. Visualize these tests.

3.9. Compute by using Monte Carlo integration the expression

I =

R

A
x

2π exp
(
−1

2xT x
)

dx
R

A
1

2π exp
(
−1

2xT x
)

dx
,
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where A = [0,2]× [0,2]. Additionally, study the convergence of Monte Carlo simulations
towards the exact value

I =
1− exp(−2)√

2π(Φ(0)−Φ(−2))

[
1
1

]
,

where Φ is the cumulative function of distribution N(0,1). The integral in question repre-
sents the expectation of a posterior distribution whose prior distribution is N(0, I) and the
measurement is the information that the state is inside the area A.

3.10. Implement two filters of this group {EKF, UKF, PF}, whose specifications is

% [X,P,...] = filter(x0,P0,F,Q,Y,S,R)

%

% x_{k+1} = Fx_{k}+w

% y_{k} = h(x_{k})+v,

% where (h(x_{k}))_i is range measurement from base station s_i

%

% IN: x0 = initial state at time 0 (R^n)

% P0 = initial covariance matrix

% F = state transformation matrix

% Q = covariance matrix of process noise (w)

% Y = measurements Y=[y_1,...,y_k](R^(m \times k),

% S = coordinates of base stations [s_1,...,s_l]

% R = covariance matrix of measurements errors (v)

%

%OUT: X = [x_0,x_1,...,x_k], where x_i is estimate at time i.

% P(:,:,i) = MSE matrix at time i

function [X,P,...] = filter(x0,P0,F,Q,Y,S,R)

There are data in web page http://www.students.tut.fi/~aliloytt/menetelmat/

harkat.html that you can test your filter. Visualize these tests.
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Chapter 4

Positioning techniques

JUSSI COLLIN

4.1 Inertial navigation

In principle, inertial navigation algorithms are based on the coordinate transformations studied
in Chapter 1. Before going through the basic formulas, we have to understand what we are
measuring. The measurement of an accelerometer triad, aB −gB, was already mentioned. This
is perhaps the most difficult measurement to comprehend, because vector a is the acceleration
in inertial coordinate frame. The measurement device however outputs this vector in B-frame.
Another problem is that the use of Newton’s laws of motion also requires measurement of
gravitational forces, and that cannot be done directly with the accelerometers! For instance,
stationary accelerometer triad at the North Pole is not in accelerating motion with respect to
the ECI-coordinates, but the accelerometer output is still −g (i.e., upward acceleration). The
Newtonian approach in this situation is to draw the gravitation force vector downwards and the
normal force upwards. These forces cancel each other, and then the acceleration is 0. From
this it follows that if location changes are computed in ECI with the help of accelerometers, the
local gravity vector needs to be separately computed and added to the measurement. Note that
g is a function of location, which causes some feedback connections (see Exercise 4.7).

As mentioned previously, the acceleration aB is given in the B-coordinate system. It is not
reasonable to integrate acceleration measurements taken in this coordinate system. Instead, we
first have to move to I- or E-coordinate system. In practice, we need to compute and update
the rotation matrices CI

B, CE
B and CL

B during navigation, and for this we need the gyro triad
measurements. As said, a gyro triad∗ outputs vector wB

IB. Next we briefly go through the basic
equations and measurement errors of inertial sensors.

∗The simplest gyro and accelerometer assembly consists of three sensors whose measurement axes are perpendicular
to each other.
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4.1.1 Accelerometers and angular velocity sensors

The term inertia refers to a property of matter

Figure 4.1: Operational principle of an acceler-
ometer. Source: [40]

by which it remains in uniform motion unless
acted upon by some external force. Accel-
erometers and some gyros are indeed based
on this principle. To build an accelerometer
we need a mass, a spring, a case, and some-
thing to indicate the location of the mass
with respect to the case (Figure 4.1).∗ The
relation between force and acceleration is
known, and the compression or stretching of
the string shows the magnitude of this force.
Yet, in Figure 4.1 the visible spring compres-
sion can be either the combined effect of the
normal force and gravitation while the sensor
is stationary, or it may be caused by accel-
eration in the inertial frame (without gravita-
tion). The sensor does not know which case it is.

There are several different choices to

Figure 4.2: Example of a gyro based on the
Coriolis force. Source: [40]

measure angular velocity. Mechanical gyros
are also based on inertia, namely the moment
of inertia of a rotating body. One way
to measure angular velocity is to install a
rotating mass (M) into gimballed case (B),
so that wB

BM = [0 0 ωM]T . The rotating mass
is supported in such a way that it and its bear-
ings are able to rotate in direction uB

out = [0 ±
1 0]T , but not in direction uin = [±1 0 0]T .
Then the motion wB

IB = [ωin 0 0]T causes this
mass to rotate in direction wB

BM×wB
IB, i.e. the

output axis uout . When we measure rotation
with respect to this axis, we get information
about the angular velocity with respect to uin

axis.

A rotating mass is not always practical if
there are design limitations with respect to
size or power consumption. Another type of
mechanical gyro is a vibrating gyro, where
motion occurs back and forth. Figure 4.2
presents the operational principle of a tuning

fork gyro. The upper fork is electrically driven to resonate. If the sensor rotates around
the input axis, then the Coriolis force causes an oscillating motion perpendicular to the forced
resonance direction and to the input axis direction (the arrows in the lower fork). This motion is

∗Additionally, we can have a feedback element that tries to keep the mass stationary with respect to the case,
resulting in a closed loop accelerometer.
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measured (usually capacitively), and the result is an angular velocity modulated signal, which
can be used to derive the angular velocity. Micro-mechanical (MEMS) gyros use this principle.

Moving parts are not necessarily needed for measuring rotation, because mechanical rotation
has an electro-magnetic counterpart, the Sagnac phenomenon. To explain the phenomenon,
relativity theory is needed, which is beyond the scope of this course. The operation principle
of a Ring Laser Gyro (Figure 4.3) is as follows. We send a laser beam, and with the help
of mirrors we direct the beam back to its initial location, following a clockwise path. We add
another laser beam which follows a counter-clockwise path. Two standing waves are formed,
whose frequency difference is measured. When the case rotates with respect to I-coordinates
(around the normal of the plane defined by the laser route), this frequency difference changes∗.
The use of optic measurements has several benefits:

• The gyro is extremely accurate.

• The input bandwidth is unlimited.

• There are no moving parts, jitter is not a problem and reliability is better than with
mechanical gyros.

• Linear acceleration does not affect the measurement.

On the other hand, its price, size and power consumption prevent its use in personal applications.

Figure 4.3: A laser gyro. Source: [40]

∗The beam going to the rotation direction takes a longer trip viewed in the I-coordinates . . .
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4.1.2 INS equations

This section follows the notation of [35]. The origin of the location vector is the origin of the
E-frame, and gL is computed separately as a function of location (e.g. from a gravitation model).
The time derivative of the B-coordinates and L-frame was already presented (1.25):

ĊL
B = CB

L(wB
IB×)− (wL

IL×)CL
B. (4.1)

Initial condition CL
B is obtained with a separate initialization algorithm (Exercise 4.8). The

angular velocity term wB
IB is obtained from a gyrotriad, and the term wL

IL is the sum of the
rotation of Earth and the rotation of local coordinates with respect to Earth due to ground speed:

wL
IL = wL

IE +wL
EL (4.2)

Local frame (L) keeps z-axis perpendicular to a sphere (or ellipsoid) surface, and while an object
is moving on the surface of the Earth this coordinate system rotates with angular velocity:

wL
EL = Fc(u

L
ZL ×vL)+ρZLuL

ZL (4.3)

The 3×3 matrix Fc depends on whether an ellipsoid or a spherical model is used. Additionally,
the term ρZL controls L’s north-axis motion (Exercise 4.1). The unit vector uL

ZL points to the
“up” direction in the L-frame. With our conventions this means uL

ZL = [0 0 1]T .

The transformation of the measured acceleration vector (denote aB
SF = aB −gB) to L-frame is

aL
SF = CL

BaB
SF . (4.4)

Finally, we need the gravitational force (gP=gravitation plus the rotation effect of Earth)

gL
P = gL − (wL

IE×)(wL
IE×)RL, (4.5)

the rate of change of the velocity vector (with respect to Earth, E-frame)

v̇L = aL
SF +gL

P − (wL
EL +2wL

IE)×vL, (4.6)

and the rate of change of the horizontal location

ĊE
L = CE

L (wL
EL×) (4.7)

and the rate of change of the height

ḣ = uL
ZL •vL. (4.8)

That’s all. With a suitable initial condition, position and velocity can be computed from the
ordinary differential equations (4.6)–(4.8). For clarity, group the most important terms.

• The information from the sensors: aB
SF and wB

IB

• The terms related to Earth properties: wIE , g, Fc

• The terms that we originally wanted to compute: RE (location vector in ECEF, CE
L and h,

height from reference geoid, provides the same information, Exercise 4.2), vL (velocity
with respect to Earth), and CL

B (INS device attitude with respect to L-coordinates.)
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4.1.3 Measurement errors

Gyro errors usually define the quality of the whole INS system. This results from the nature of
INS mechanization, and on the other hand from the fact that angular velocity measurement is
more difficult than acceleration measurement. Accordingly, with the notations of Chapter 2, let
the measured gyro output be y. Because of the measurement errors this is not in practice wB

IB

but for instance in accordance with model

y = MwB
IB +b +n. (4.9)

Here matrix M contains scaling and alignment errors (scale factor, misalignment). The noise
terms are divided into bias-like (b) and uncorrelated noise (n). Notice that the error term is now

v = (M− I)wB
IB +b+n,

i.e. the scaling and alignment errors cause the error to be dependent on the signal itself. This
causes problems in the statistical analysis of the measurement errors.

A basic assembly contains three sensors whose measurement axes are perpendicular to each
other. Then the diagonal elements of the 3× 3 matrix M are the scaling errors of the corres-
ponding sensors. An alignment error results from the fact that in real system the sensors are
not exactly perpendicular to each other. Thus, data from one axis leaks to the other sensors.
In high-quality INS devices, the alignment error is in order of one thousandth of a degree, and
the scale factor errors are a few parts per million (ppm) of the signal magnitude. Notice that
it is not necessary to align the sensors perpendicular to each other as long as we know the
angles between the axes. There can be more sensors than the required three to ensure continued
functionality in case of a defect. In that case, a perpendicular installation is not optimal.

Correlated noise b is in practice the most challenging to deal with. The term refers to the errors
that stay the same or almost the same for a long time. The separation of noise into b and n is
not at all obvious. The limiting situation, where b would be always constant and n would be
completely uncorrelated between samples, is not found in the real world. If it was, then the bias
term could be completely solved already in a factory calibration and remaining errors would
all be white. In practice, the correlation time of b is of the same order as the time between the
device startups (from hours to months), and the correlation time of n is significantly smaller.
Characterization of these error terms can be done using Allan Variance plots [2].

Previous chapters already contain a lot of information about the handling of the error term n.
You should notice that INS mechanization includes a lot of integrations, so the growth of the
bias-like errors with respect to time has a considerable effect on the positioning accuracy. If
a short sample from data looks noisy, one should not make too radical conclusions. Trying to
compare gyros’ quality using the standard deviation estimates computed from samples taken
over just a few minutes can be very misleading.

Similarly to the gyro measurements, the model (4.9) works also for acceleration sensors, as
long as term wIB is replaced by term aB

SF . Table (4.1.3) lists the requirements for the sensors
if the INS solution error is desired to be within a few kilometers after one hour navigation.
The requirements are stringent, especially for the gyros. Depending on the intended use, there
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might also be requirements for the dynamic range, for example that a rotation of 500 degrees
per second has to be measured. An INS device of this level costs about 100 000–200 000 US
dollars, but the prices are steadily falling. In addition to price, the export limitations cause
problems, because accurate INS devices are classified as weapons technology in several coun-
tries. MEMS sensors do not satisfy these requirements yet, they are not even close, but they
are easily available and naturally less expensive. And although INS by itself would not suffice
for positioning because of measurement errors, inertial measurements give valuable additional
information to positioning algorithms [7].

Table 4.1: Accuracy requirements of sensors, positioning errors 0,1 or 1 knots [36]

0.1 nmph 1 nmph
Acceleration sensor, bias 5µg 40µg

Acceleration sensor, scaling error 40ppm 200ppm
Acceleration sensor, alignment error 1/3600◦ 7/3600◦

Gyro, bias 0.0007◦/h 0.007◦/h
Gyro, scaling error 1ppm 5ppm
Gyro, alignment error 0.7/3600◦ 3/3600◦

4.2 Satellite positioning based on carrier measurements

The basic measurements of a GPS receiver are often considered to be the pseudorange measure-
ment and the delta-pseudorange measurement. These are actually formed using (replica) code
phase- and (replica) carrier phase measurement. The replica code phase can be converted to
transmission time from which the pseudorange can then be computed. The replica carrier phase
can be converted to a delta-pseudorange or to so-called integrated Doppler measurement.

Carrier measurements were not designed for utilization when GPS was implemented, instead
GPS was designed assuming that only code measurements would be used. Use of carrier meas-
urements in GPS-positioning was developed from research in which the relative locations of
two astronomical antennas were measured.

With the help of carrier measurements, a change of location can be measured very accurately.
If some reference point (where a range is measured) is accurately known, the absolute accuracy

is also transfered into accuracy of the measured location (Figure 4.4). The most important
application area of relative positioning is land surveying, i.e. geodesy. In personal positioning
the carrier signal has been used for smoothing code measurements (carrier smoothing). Relative
positioning is however also coming to personal positioning [1].

4.2.1 Doppler effect

Satellites are in continuous motion with respect to the user. GPS satellites orbit the Earth in
elliptical, nearly circular orbits about two times per day. Thus their orbit velocity is about 4
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Figure 4.4: Relative positioning. The accuracy of the initial location translates into accuracy of the
whole route if the route can be followed without errors.

km/s. Of course the user’s own motion also affects the relative velocity between satellites and
the user.

The relative motion between a satellite and a receiver receiving the satellite’s transmitted signal
affects the frequency of the received signal. This effect of relative motion between transmitter
and receiver on received frequency is called the Doppler effect. Correspondingly, the differ-
ence between transmitted signal frequency and received signal frequency is called the Doppler
shift. GPS receiver can measure the Doppler shift very accurately. By continuously following
Doppler shift information, the motion between the satellite and the user is obtained, and when
the satellite’s velocity is known, the user’s velocity can be found.

The Doppler effect is modeled as follows:

fR = fT (1− vr ·a
c

) (4.10)

where fR is the received frequency, fT is the transmitted frequency, vR is the relative velocity
between the satellite and the user, a is a unit vector from receiver’s location towards the satellite
and c is the speed of light.

The Doppler shift is thus

fD = fR − fT . (4.11)

By integrating the Doppler shift fD over a measurement period (typically 1 s) the change of the
carrier measurement is obtained. In other words, fD is the rate of change of the carrier and thus
integration over the measurement period gives the carrier phase measurement.
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4.2.2 Connection between Doppler frequency and change of range meas-

urement

Example 14 (page 24) presented a measurement model for pseudorange measurement. Using
the same notations, we now express the pseudorange derivative i.e. deltarange, assuming the
measurement error is zero:

ρ̇ =
d

dt
(‖s−x‖+b) = (vsat −vu)

T s−x

‖s−x‖ + ḃ (4.12)

where vsat is satellite’s velocity vector, vu is receiver’s velocity vector and ḃ the receiver’s clock

drift [s/s].

Now we see that a = s−x
‖s−x‖ and that the relative velocity vr = vsat − vu, and therefore (4.12)

becomes

ρ̇ = vr ·a+ ḃ. (4.13)

When the receiver’s clock drift effect is ignored and referring to Equations (4.10) and (4.11),
we get the result

fD = fR − fT =
fT

c
vr ·a =

fT

c
ρ̇. (4.14)

4.2.3 Connection between Doppler frequency and phase measurement

The carrier measurement is also called “integrated Doppler”. A new carrier measurement is
obtained by adding to the old measurement the integral of the Doppler over the measurement
epoch:

φn = φn−1 +

Z tn

tn−1

fD(τ)dτ (4.15)

where φn is the carrier measurement at epoch n and fD is the Doppler frequency as a function
of time.

Let’s look at a simplified example. A general alarm signal is tested by transmitting a sinus-
oidal (with changing frequency) sound signal at time 12.00.00. Assume that the sender and the
person who hears the signal have perfectly synchronized clocks. The receiver knows the trans-
mission frequency and the transmission time. The receiver notices that the sound frequency is
at its highest at tR seconds after noon. What can the receiver conclude about the range to the
transmitter?

The sound wave travels at speed v, i.e. the frequency of the transmission time instant is received
s/v seconds later, where s is range. The transmission frequency had been modulated by a
sinusoid, i.e.

fT (t) = Asin(ωt +φ0)+ f0.
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The constant terms A, ω, f0 ja φ0 are known by the receiver. On the receiver side it holds that

fR(t) = fT (t − s/v) = Asin(ω(t − s/v)+φ0)+ f0,

i.e. phase-difference (R-T) is −ωs/v. From this we can solve s but what remains is the so-
called integer ambiguity k, because the same measurement would also be obtained at range
s1 + 2kπv

ω . These are multiples of the wavelength, 2πv
ω = λ, and the receiver has a multitude of

range solutions that differ by multiples of the wavelength. The wavelength is thus significant
when phase measurements are used for positioning. The wavelength of GPS L1-frequency is
19 cm, from which follows bad news and good news:

• There are several solutions

• If the correct k is somehow found, and the phase can be measured with an accuracy of
few degrees, we have a position solution to within a few millimeters.

Unfortunately, the phase difference can not be directly studied, in the example case there was no
noise corrupting the phase measurement. Because of noise, the GPS receiver needs to measure
the phase indirectly with the help of Doppler measurements and equation (4.15).

4.2.4 Solving the integer ambiguity

At this point it should be clear that a carrier measurement describes motion occurred between
two consecutive measurement epochs, and that a carrier measurement can be done very accur-
ately. The number of whole waves is however unknown when initializing the positioning (for
every signal this number is thus different). That is like initializing from a blind situation,
where an accurately known wave measurement is added to “some number” in each measure-
ment epoch, and relative positioning is accurate.

Resolving the numbers of whole waves in the initial case makes accurate and absolute posi-
tioning possible. Carrier cycle integer ambiguity resolution is an active research area of posi-
tioning. The most famous methods are the LAMBDA method developed by Teunissen [39] and
Hatch’s least squares method [11].

4.2.5 Differential fixes

Combining the code and the carrier measurements of two near-by receivers eliminates the range
errors that are common to both receivers, such as satellite ephemeris errors and unmodelled
ionospheric erros. Single difference is the difference taken over signals that are obtained from
the same satellite with two different receivers, as shown in Figure 4.5. Double difference is the
difference taken over the single differences associated to two separate satellites, as shown in
Figure 4.6. When double differences can be used for code and carrier measurements, then most
of the common errors can be removed [19].
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Figure 4.5: Single difference

Satellite B

Satellite A

Receiver 1 Receiver 2

Atmosphere

Figure 4.6: Double difference

Exercises

4.1. Consider formula

wL
EL = Fc(u

L
ZL ×vL)+ρZLuL

ZL.

What kind of matrix Fc do we get, if we use a sphere model, with sphere radius R? What
does the term ρZL do? Hint: think about an airplane that flies very near the north pole. If
the L-frame’s y-axis is always kept pointing north, what happens to vector wL

EL ?

4.2. Is CE
L together with h sufficient information for unique location solution?

4.3. Three gyros are enough in INS applications, but to guard against fault situations there
can be more. Assume that three gyros are perpendicular with each other, and add one
gyro such that its measurement axis is not parallel with any of the other gyros. Can we
now detect whether some sensor gives completely faulty measurements? If yes, can we
identify the sensor in question and thus isolate false measurements? What if we have 5
sensors such that none of the three axes are in the same plane?
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4.4. Show that the error in computation of g (gravitation model error) causes positive feedback
connection to the height error of INS.

4.5. Assume that in future MEMS-gyro with analog output can satisfy the 1 nmph INS require-
ments, see Table (4.1.3). In order to digitize the signal, an A/D converter is needed.
Estimate the required dynamic range, i.e. how many bits are needed for quantization.

4.6. How many integrators does the term wB
IB (i.e. gyrodata) go through in INS equations?

What happens to (nearly) uncorrelated noise after that many integrations? What about
bias-type noise?

4.7. Computer exercise: Feedback connections in INS mechanization: see course web page.

4.8. Computer exercise: CL
B initialization with the help of earth rotation vector and normal

force (see course web page).

4.9. Derive Equation (4.12) or show that it is false, i.e.

d

dt
(‖s−x‖+b) = (ṡ− ẋ)T s−x

‖s−x‖ + ḃ
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Chapter 5

Reliability

HELENA LEPPÄKOSKI

From a user perspective, positioning is not reliable if positioning cannot be done because of
system or device error, or the result is clearly wrong although positioning seemingly succeeds.
In this section we take a closer look at methods that may help a receiver detect large errors in
the positioning solution and to remove the measurements causing the errors.

Reliability relates to several evaluation criteria describing the performance of positioning, and
these are presented in Section 5.1. Then, principles of statistical inference and hypothesis testing
are reviewed. Finally, the last section presents error detection methods and removal methods
applied to a static location solution.

5.1 Performance measures of positioning

In the following we concentrate on satellite positioning, though some of the given indicators
can be used on other positioning methods as well. This subject is covered e.g. in [38].

5.1.1 Accuracy

Accuracy of a positioning technology means how close the computed position is to the true posi-
tion. Often accuracy is evaluated using the root mean square error (RMSE) of the positioning
results. Another common way to describe error is to give its statistical distribution. This can
be done either by using a probability density function or cumulative function. One simplifica-
tion of these is CERP (Circular Error Probable), where a circle radius is defined such that the
circle contains a certain percentage of the positioning results when the center of the circle is the
true location of the object. For instance 95% CERP 56 m means that at least 95% of the posi-
tioning results are at most 56 meters away from the true location. CERP is used for describing
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a horizontal 2-dimensional location error. Correspondingly, the magnitude of a 3-dimensional
positioning error can be given using SERP (Spherical Error Probable), where instead of the
circle radius, the sphere radius is given∗.

Positioning accuracy depends not only on accuracy of measurement signals but also on how
measurement errors affect the error of the location solution. The latter depends on the measure-
ment geometry, and its goodness is evaluated with DOP (see Section 2.3.1).

5.1.2 Integrity

Integrity of a positioning system means the ability of the system to warn a user in real time in
case the system should not be used for positioning. Integrity information is supposed to warn
about a situation where the system seemingly works and produces a positioning signal, but the
signal is for some reason so faulty that the computed location based on it is worthless.

GPS satellites transmit information to a user about their integrity in navigation messages, but
that information always comes delayed. The Earth based control segment must first have real-
ized the error in the satellite transmitted signals, and after that transmitted information about
detected integrity problem to the satellites, which is then transmitted to users in navigation
messages. The use of the positioning result during this delay can have fatal consequences e.g.
in airplane or ambulance navigation.

Because of the delay in the offered integrity information of the GPS system, methods have
been developed where the receiver itself checks the integrity of the signals. These methods
are called RAIM (Receiver Autonomous Integrity Monitoring). The methods are based on
consistency checks of the positioning signals. The methods can be used if there is redundancy in
the measurements, i.e. there are enough signals in use to make the location estimation problem
over-determined. Lack of consistency in the signals can be caused by either an error in the
signal itself or an error in the measurement model.

Originally, the development of RAIM methods were driven by civil aviation security require-
ments. The aim has been to eliminate large position errors that arise for instance as a result of
a satellite clock malfunction, and to eliminate errors in the measurement model that are caused
by faulty information about a satellite’s location (ephemeris error). Thus, RAIM aims to detect
a possible error in the positioning system itself, where the error is caused by either the control
segment or the space segment. These kinds of errors are very rare, their frequency is in the order
of one error every 18–24 months. Because of the rareness of these errors, it is usually assumed
that errors affect only one of the measurement equations at a time.

A positioning signal can be faulty also for other reasons than those caused by the control or
space segment. Signal reflection and multipath can cause considerable errors compared to the
normal noise in the positioning measurements. High sensitivity receivers (HSGPS, High Sensi-
tivity GPS) can receive strongly attenuated signals, and the poor signal to noise ratio of the
measurement causes large amplification of noise in the measurement itself. Additionally, it is
possible to lock on to a wrong signal when the signal/noise ratio is poor. When an error-free

∗In some sources CERP and SERP are abbreviated with CEP and SEP
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satellite location is combined with a wrong measurement, the final result is as bad as in the large
ephemeris-error case, when seen from the measurement equation perspective.

The errors mentioned above are typical in personal positioning. Because their effect appears the
same way as the errors caused by control or space segment, the same methods as in traditional
RAIM can be used to detect and remove them. Designing RAIM algorithm for handling errors
of personal positioning has a few additional challenges: these errors are more frequent than
the errors caused by control and space segment, and also the probability of errors occurring
simultaneously in several different measurement equations is large.

In addition to a receiver independently performing integrity checking, there are monitoring
station networks external to GPS that monitor satellites and transmit information about GPS
integrity to users. Like the integrity information in the navigation message, also these are
delayed, and cannot detect problems caused by the immediate surroundings of the user.

5.1.3 Reliability

The term reliability is used in many different meanings:

• The applicability of a device or system to its intended use, as a function of time

• The capability of a device or system to accomplish a required operation in defined condi-
tions over a defined time period

• The probability that the operational unit accomplishes the required operation in defined
conditions for a defined amount of time

• Fulfillment of performance design requirements by a device or system

• Fault tolerance of a device or system

Reliability of satellite positioning can mean two things, either a system reliability or statis-
tical reliability of the results. In the first case, reliability is linked to reliability of devices and
components, i.e. the probability of a correct operation. The analysis tools are then for instance
probability densities of components to fail as function of time. Statistical reliability on the
other hand means consistency of the measurement series. In satellite positioning this means
that simultaneously taken measurements from different sources are available, whose mutual
consistency can be studied if the positioning problem is over-determinend, i.e. there are more
measurements available than necessary for positioning. In these notes positioning reliability is
looked at from the point of view of statistical reliability of the positioning results.

In the analysis of geodetic measurement networks, reliability means the ability of the estimation
to detect large errors [21], [22]. Positioning reliability defined this way is as a concept similar
to integrity studied by RAIM algorithms. This kind of reliability definition can also be used in
the performance analysis of personal positioning [23].

The geometry of the positioning problem affects not only the positioning accuracy but also how
well the reliability or integrity of the positioning problem can be examined with consistency
tests. The usual DOP used in the estimation of the accuracy of the positioning result does not
always describe sufficiently a problem’s applicability to consistency checks.
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5.1.4 Availability

Positioning availability is affected by several factors. In the case of satellite positioning, the first
prerequisite for positioning availability is that a receiver is able to receive a sufficient number of
satellite signals. This depends not only on the satellite constellation, but also on the positioning
environment — signals do not go through thick concrete structures. Although positioning avail-
ability may be excellent on the roofs of the highest buildings in the positioning environment,
it would not necessarily be good at street level, inside buildings, in tunnels or in underground
spaces.

When evaluating positioning availability, requirements can also be set for positioning quality
(accuracy, reliability), then the number describing availability (probability or percentage of time
available) usually gets smaller. For instance, positioning availability can be studied when the
requirement is that the satellites used in positioning have elevation angle at least 5◦ and their
PDOP (position dilution of precision) can be at most 6.

Availability of the integrity or reliability information can also be examined separately. To
produce such information more visible satellites are required than just for positioning, and addi-
tional requirements for the geometry are imposed. If the positioning result is rejected because
of the integrity or reliability check and the error can not be isolated, or the reliability check
is not available because of geometry or number of satellites, then positioning availability gets
worse. On the other hand, if the above checks are not done, but all measurements are accepted
then, especially in personal positioning, the average positioning accuracy gets worse.

5.2 Statistical inference and hypothesis testing∗

Many methods developed for integrity or reliability checks of positioning problems are based
on statistical inference and hypothesis testing. The methods represented in this chapter are
covered in more detail in references [18, 21, 22, 23, 30, 42]. The purpose of statistical inference
is to determine the truth of some statement in the light of collected observations. A typical
question is, for instance, if an industrial process really produces different quality product than
before, or if the changed test results are just coincidental. When examining the measurement
set, a common question is whether the measurement differing from the others is faulty or if the
deviation of the detected magnitude could be a coincidence, in other words, is the deviation
probable when the usual variation of the measurement in question is taken into account.

For inference, the question to be solved is rephrased into a hypothesis i.e. an assumption of
the state. These assumptions, which can be either true or false, are called statistical hypotheses.
Usually a hypothesis concerns one parameter of the probability distribution of the examined
phenomenon.

Hypothesis testing is not meant to prove the hypothesis true or false. Instead, the aim is to
show that the hypothesis is not believable, because it leads to very small probability, that is, the

∗This section is based on the frequentist approach to statistics, as opposed to the bayesian approach.
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collected observations deviate considerably from those which would have been probable if the
hypothesis was true.

Example 23. We want to find out whether the coin used in coin tossing is fair, i.e. whether the

probability of tossing a head the same as tossing a tail. To study this, we form the hypothesis

“the coin is fair”: p = 0.5, where p is the probability to get a head in coin tossing. As an

experiment, we study the fairness of the coin by tossing it 20 times. Say 16 of the tosses gives

a head. Then we are quite ready to reject the hypothesis “the coin is fair”, because when the

hypothesis holds, the obtained result “16 heads” has a very small probability, that is, the test

result deviates considerably from the one predicted by the hypothesis.

The hypothesis to be contradicted is chosen such that if it holds, nothing changes or has not
changed, or such that it presents a neutral situation that does not require any actions. For this
reason it is often called the null hypothesis H0. When studying the state of a production process,
the null hypothesis would be “there are no changes in product quality” (no need to start looking
and fixing the defect in the process that has caused a change in the quality). The null hypothesis
in a measurement data analysis is “measurements are normal” (no need to start thinking what is
faulty and needs to be removed from the sample set), and in the case of coin tossing “the coin
is fair” (no need to change the coin, random hits can be generated with it).

Hypothesis testing can be described as a five-phased process:

1. Formulate the practical problem into a hypothesis.

Start from the alternative hypothesis H1. This should cover those cases that are to be
diagnosed, where a positive test result means that it is time to take actions.

The null hypothesis is chosen in such a way that it is simple and represents the status quo,
and together with the alternative hypothesis it covers all possible situations. Examples:

• H1: “The coin is not fair”, p 6= 0.5 (the coin has to be changed). H0: “The coin is
fair”, p = 0.5. In these p is probability that the result in coin tossing is head.

• H1: “The new process B improves product quality compared to the original process
A”, µB > µA. H0: “The new process B does not improve product quality compared
to the original process A”, µB ≤ µA. In these µA and µB are expectations of a quantity
describing product quality, where higher value describes better quality.

2. Choose a test statistics T , which is a function of the observations (measurements).

Good test statistics have the following properties:

(a) It behaves differently when H0 is true compared to when H1 is true.

(b) Its probability distribution can be computed when H0 is assumed to be true.

3. Choose a critical area.

If the value of the test statistics T is in the critical area, H0 is rejected in favor of H1. If
the value of T is not in the critical area we conclude that there is not enough evidence
to support hypothesis H1, and hypothesis H0 is not rejected. No decision is made about
whether or not to accept H0; if there is no evidence for H1, we fail to reject H0.
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The problem is to decide what kind of test statistics values strongly imply that H1 is true.
Critical areas are for instance the following:

Right-sided H1 : T > Tcr. If the test statistics is larger than the (right-sided) critical value,
H0 is rejected.

Left-sided H1 : T < Tcr. If the test statistics is smaller than the (left-sided) critical value,
H0 is rejected.

Two-sided H1 : T < Tcr1 or T > Tcr2 . If the test statistics is either larger than the right-
sided critical value or smaller than the left-sided critical value, H0 is rejected.

4. Decide the size of the critical area.

Statistical inference is based on the idea that the decision made about rejecting or not
rejecting H0 can be correct or incorrect. Inference can lead to a situation where H0 is
rejected, although it is correct in reality – this is called a type I error. H0 can also not get
rejected, although it is incorrect in reality and should get rejected – this is called a type II

error.

When defining the critical area, we decide how big a risk of making a wrong decision are
we ready to take. The probability that a type I error occurs is called the significance level

of the test or the risk level and it is denoted with α. Often used significance levels are 5%,
1% and 0.1%. Our confidence in the decision to not reject the null hypothesis is described
with confidence level 1−α, which is the probability of the correct decision “H0 is not
rejected when H0 is true”.

The probability of a type II error is denoted β. The test efficiency 1−β is the probability
that the real change from the status quo situation represented by H0 is detected from the
variation of the test statistics. Table 5.1 shows the four different possibilities occurring in
hypothesis testing to end up to the correct or wrong decision .

5. Determine whether and where computed T is located in the critical area.

If T is located inside but near the edge of the critical area, we can deduce that we have
some evidence that H0 should be rejected. On the other hand, if T is deep in the critical
area, far away from the edge, we have significant evidence to support the rejection of H0.

Table 5.1: Null hypothesis testing

Decision
H0 is not rejected H0 is rejected

Reality H0 true correct decision type I error
probability 1−α probability α

= confidence level = significance level
H0 false type II error correct decision

probability β probability 1−β

= test power
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Example 24 (α, β and the magnitude of the difference observed with a test, [42]). We illustrate

hypothesis testing with an example where the problem geometry is simpler than in a typical

positioning problem. We observe the weights of male students at a certain university. The

null hypothesis is that the male students weigh on average 68 kg, so we set the hypotheses as

H0 : µ = 68 and H1 : µ 6= 68. The alternative hypothesis covers the cases µ < 68 or µ > 68.

The test statistics is chosen to be the sample mean x̄0. If it occurs near the assumed value 68,

we have little or no evidence to reject H0. If the sample mean is considerably larger or smaller

than 68, the data is not consistent with H0 but it supports alternative hypothesis H1. The critical

area is chosen (rather arbitrarily) to be in intervals x̄ < 67 and x̄ > 69; The non-rejecting area,

where H0 is not rejected, is 67 ≤ x̄ ≤ 69. These have been visualized in Figure 5.1.

Figure 5.1: Critical area (on the edges).

Compute the probabilities for type I and II errors when the inference criterion is in accordance

with Figure 5.1. Assume that in the population the standard deviation of weight is σ = 3.6. The

sample mean X̄, which is used as a test statistics, is computed from a randomly selected sample

set whose size is n = 3.6. Based on the central limit theorem it is known that the distribution of

X̄ approaches a normal distribution whose standard deviation is σX̄ = σ/
√

n = 3.6/6 = 0.6.

m  test statistic

probability density

α/2α/2

67 68 69

Figure 5.2: Critical area when testing hypothesis µ = 68 against hypothesis µ 6= 68.

The significance level of the test α, i.e. the probability of a type I error (where H0 is rejected,

though H0 is true), is equal to the sum of the shaded areas in Figure 5.2. The probability for the

case where X̄ ∼ N
(
68,0.62

)
and X̄ is in the critical area is

α = P(X̄ < 67)+P(69 < X̄) = 2P(X̄ < 67) = 0.0956.

According to the result, about 9.6% of all 36-sample sets would cause rejection of hypothesis

µ = 68 although the hypothesis is true. To lower the probability α, we should either increase the
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sample set size (which will reduce the sample standard deviation) or increase the non-rejection

area. Assume that the sample set size is increased to n = 64. Then σX̄ = 3.6/8 = 0.45. Now

α = 2P(X̄ < 67) = 0.0263.

A low probability of a type I error i.e. a small value of α, does not guarantee a good test. We

also want that the probability β of a type II error is sufficiently small. To study the probability

β, we compute values of β with fixed values of µ that satisfy the alternative hypothesis µ 6= 68.

For instance, we want to make sure that H0 is rejected with high probability, if the distribution’s

true expectation is µ ≤ 66 or µ ≥ 70. Then β can be computed for alternative hypothesis µ = 66
or µ = 70. Because of symmetry it suffices to find the probability that the null hypothesis µ = 68
is not rejected when the alternative hypothesis H1 : µ = 70 is true. Then a type II error occurs

if the sample mean occurs in the interval [67,69] while H1 is true. From Figure 5.3 we get

β = P(67 ≤ X̄ ≤ 69 when µ = 70) .

  

 

probability density
HH 1

β

67 68 69 70

 β

67 68 69 test statistic
68.5

Figure 5.3: Probability of type II error when testing µ = 68 against µ = 70 (left) and against mu =

68.5 (right).

Assume further that n = 64. Then, according to the alternative hypothesis X̄ ∼ N
(
70,0.452

)
,

and

β = P(67 ≤ X̄ ≤ 69) = P(X̄ ≤ 69)−P(X̄ ≤ 67) = 0.0131−0.0000 = 0.0131.

If the true µ is µ = 66, then β is the same 0.0131. For other possible values µ < 66 or µ > 70,

then the probability β is even smaller, so the probability of not rejecting H0 is small if H0 is false.

The probability of type II error increases if true µ is not equal but approaches the assumed value

of the null hypothesis. On the left side of Figure 5.3 we have an example where the true µ = 68.5.

Then X̄ ∼ N
(
68.5,0.452

)
, and

β = P(67 ≤ X̄ ≤ 69) = 0.8667−0.0004 = 0.8663.

To conclude it can be stated that the probabilities of type I and II errors, α and β, depend on
each other, and β depends on distance between the true value and the value assumed in the null
hypothesis. A more theoretical view on this matter is handled for instance in [44] or [14].
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5.3 Residuals

In this section, we review the properties of residuals, and introduce the notations used in the
remainder of this chapter, which in some ways differ from the notations used earlier in this
hand-out. In the analysis it is assumed that the relation between measurements and parameters
to be estimated can be presented using the linear measurement model

y = Hx+ εεε, (5.1)

where the n×1-vector y contains measurements (observations), εεε contains measurement errors,
m× 1-vector x contains the states (parameters to be estimated), and the measurement matrix
H defines a linear relation between measurements and states. In positioning applications, the
matrix H is also called the geometry matrix. In practical positioning applications, the computa-
tions are based on a nonlinear model, and H is obtained by linearizing the system of nonlinear
measurement equations.

Assume that a location has been solved using the weighted least squares method. If weights are
chosen to be the inverse of the measurement variance matrix, the weighted least squares method
gives the BLU estimate (Best Linear Unbiased Estimate).

The covariance of the measurement errors is assumed known: V (y) = V (εεε) = Σ. Then the
weighted least squares solution (WLS-solution) is

x̂ =
(
HT Σ−1H

)−1
HT Σ−1y = Ky. (5.2)

In the following it is assumed that the covariance matrix is diagonal, i.e. measurement errors
do not correlate with each other. Residuals can be written as a function of the measurements:

v = Hx̂−y = HKy−y = (HK− I) y = −Ry, (5.3)

where matrix R is called the redundancy matrix. It is left as an exercise to show that matrix R is
idempotent. The covariance of residuals can be represented using the geometry matrix and the
covariance of measurement errors (exercise):

Cv = V (v) = (HK− I)V (y)(HK− I)T = Σ−H
(
HT Σ−1 H

)−1
HT . (5.4)

The redundancy matrix can be represented using covariances of residuals and measurements
(exercise):

R = CvΣ−1. (5.5)

5.3.1 Quadratic form of residuals

Quadratic form of residuals vT Σ−1v is a common test parameter in reliability analysis of posi-
tioning. To accomplish our study, we assume that the measurement errors in model (5.1) are
normally distributed: εεε ∼ N(µµµ,Σ).
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The quadratic form can be written using the measurements:

vT Σ−1v = (−Ry)T Σ−1 (−Ry) = εεεT RT Σ−1Rεεε.

Denote A = RT Σ−1R. In order to use the result of Theorem 6 (on page 11), we determine
whether matrix AΣ is idempotent. Using Equation (5.5), we can write

A = RT Σ−1R =
(
CvΣ−1

)T
Σ−1CvΣ−1 = Σ−1CvΣ−1CvΣ−1 = Σ−1RR = Σ−1R, (5.6)

because Σ−1 and Cv are symmetric and R is idempotent. From this we get AΣ and AΣAΣ:

AΣ = Σ−1RΣ

AΣAΣ = Σ−1RΣΣ−1RΣ = Σ−1RRΣ = Σ−1RΣ = AΣ,

so RT Σ−1RΣ is idempotent and vT Σ−1v ∼ χ2 (n−m,λ), where rank(RT Σ−1R) = n−m (exer-
cise) is the number of degrees of freedom, where n is the number of measurement equations
and m is the number of states to be estimated. If measurement errors are assumed zero mean,
i.e. µµµ = 0, then the non-centrality parameter λ is 0, and then the quadratic form follows a
central χ2 distribution. If not all measurement errors are assumed zero mean, i.e. µµµ 6= 0, then
the non-centrality parameter λ = µµµT Aµµµ = µµµT RT Σ−1Rµµµ and the quadratic form’s distribution is
non-central χ2 distribution.

Consider the case where εεε ∼ N(µµµ,Σ), where measurement yi contains bias error, i.e. the expec-
tation of that error is non-zero, while other measurement errors are zero-mean: E (εi) = µi 6= 0,
E
(
ε j

)
= µ j = 0 ∀ j 6= i, where j = 1 . . .n. Then the value of the non-centrality parameter can be

computed using results (5.6) and (5.5) and diagonality of Σ:

λ = µµµT Aµµµ = µ2
i [A](i,i) = µ2

i

[
Σ−1R

]
(i,i)

= µ2
i

[
Σ−1CvΣ−1]

(i,i)
= µ2

i /σ4
i [Cv](i,i) .

(5.7)

5.3.2 Standardized residuals

A standardized residual wi is obtained by dividing the residual by the square of its variance:

wi =
vi√

[Cv](i,i)

, i = 1 . . .n.
(5.8)

Consider again the case where εεε ∼ N(µµµ,Σ), where measurement yi contains bias error, i.e. the
expectation of this error is non-zero, while other measurement errors are zero-mean: µi 6= 0,
µ j = 0 ∀ j 6= i, where j = 1 . . .n. Denote diagonal items of Σ with [Σ](i,i) = σ2

i .

For the expectation of residual vector items we get based on (5.3)

E
(
v j

)
= E

(
[−Ry] j

)
= − [R]( j,i) µi.
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For the expectation of standardized residuals we get

E
(
w j

)
= E

(
v j /
√

[Cv]( j, j)

)
= −µi [R]( j,i) /

√
[Cv]( j, j)

= −µi [Cv]( j,i)

[
Σ−1]

(i,i)
/
√

[Cv]( j, j)

= −µi/σ2
i [Cv]( j,i) /

√
[Cv]( j, j).

For the expectation of standardized residual of the ith measurement, we get

E(wi) = −µi/σ2
i

√
[Cv](i,i). (5.9)

5.4 RAIM (Receiver Autonomous Integrity Monitoring)

RAIM is a two-phased problem. First the algorithm determines whether or not there is an error
in navigation measurements or models. This is called error detection. If an error was detected,
the second phase of the algorithm finds a combination from available measurements that does
not contain the faulty equation (signal and model).

The second phase of RAIM can be accomplished either by identifying the faulty equation and
removing it from the solution, or alternatively by seeking a combination of available equations
which seems error-free, i.e. which does not cause error detection. The first alternative is called
FDI, fault detection and identification. The other method is called FDE, fault detection and
exclusion (from the solution). Commonly the goal of FDI is also FDE, that is, to identify
erroneous equation and remove it from the solution, then the whole process is often called FDE.

If satellite positioning is only a supplemental navigation method, then just detecting error can be
sufficient. Then the system uses another navigation method, for instance INS, if RAIM detects
an error in the satellite positioning equations. If satellite positioning is the only navigation
method in use, it is often preferred to isolate the error from the solution rather than having no
location solution at all.

Use of RAIM methods requires redundancy. In satellite positioning at least four measurements
are required to solve location, whereas RAIM requires at least five measurements for detecting
error, and for error isolation at least six measurements.

There exist several RAIM methods that are seemingly different: a method based on studying
least squares residuals, a so-called parity method, a method based on comparison of ranges,
and maximum residual. In the GPS literature these different methods have been shown to be
equivalent. In this section we go through the method based on least squares residuals.

5.4.1 Error detection

The measurement model is assumed the same as (5.1) and covariance of measurement errors
Σ = σ2I. Then the weight matrix Σ−1 in the position solution (5.2) is the identity matrix, and
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thus K =
(
HT H

)−1
HT and redundancy matrix R = I−H

(
HT H

)−1
HT .

To identify the error the observable is the sum of squared residuals, abbreviated with SSE (Sum
of the Squares of range residual Errors): SSE = vT v.

If measurement errors are zero mean, then SSE ∼ χ2 (n−4), where n is number of available
measurements. If the mean of the measurement errors is non-zero, the distribution of SSE is
non-central, SSE ∼ χ2 (n−4,λ).

The test statistics is chosen to be

T =
√

SSE/(n−4) =
√

vT v/(n−4),

where the square root and division by the number of degrees of freedom is justified by the
argument that this reduces the dependence of the test statistics on satellite geometry. The critical
value of the test statistics is chosen to be

Tcr =

√
σ2 ×χ2

1−p f a
(n−4)

n−4
,

where χ2
1−p f a

(n−4) is the inverse function of the χ2 cumulative distribution function, with prob-
ability 1− p f a as argument and parameter (degrees of freedom) in brackets. Probability p f a is
the probability of false alarms, false alarm rate. In typical RAIM implementations p f a is small,
for instance in aviation with GPS as is the primary navigation method, pfa = 0.333×10−6 [19].

5.4.2 Effect of geometry

Effect of satellite geometry on RAIM’s capability to detect an error is studied by comparing
the effect of measurement error on the estimate and its effect on the residual. If the effect of
measurement error on residual is small but its effect on the estimate is large, RAIM’s possibil-
ities to protect against large errors in location estimate is poor. In this kind of situation the user
should at least be aware of the situation — poor geometry does not generally mean that there is
an error, but if there happens to be an error, it is not detected.

As an example we next present ARP checking (approximate radial error protected), whose
purpose is to find poor geometries that do not allow RAIM to detect errors. Other methods
have also been proposed to determine whether the geometry is sufficient for RAIM. ARP gives
a rough estimate of the magnitude of the positioning error which RAIM protects against. ARP

is computed with formula

ARP = SmaxTcr,

where Smax is the largest of coefficients Si that describe dependence of the test statistics and the
horizontal location error caused by error in measurement i:

Si =

√√√√
(
[K]2(1,i) +[K]2(2,i)

)
(n−4)

[R](i,i)
.
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It is assumed that the geometry is represented in ENU-coordinates, then the elements of the
two first rows of matrix K pick the effect of the measurement to the horizontal coordinates
of location estimate. To eliminate poor geometries the computed ARP value is compared to a
threshold value ARPcr: if ARP < ARPcr, then RAIM can be used, if ARP ≥ ARPcr, then RAIM
cannot detect errors of such magnitude that the ARP threshold is designed to protect against.

5.4.3 Error identification / isolation

If error identification detected an error and at least 6 measurements are available, from the avail-
able n measurements n subsets are formed, where each subset omits one of the original satel-
lites. The ARP value is computed for each of these subsets. If all ARP-values are acceptable,
the value of the test variable is computed for the subsets. If there is one faulty measurement in
the whole measurement set, it will be missing from one of these subsets, and the value of the
computed test statistics for this error-free subset should be less than the critical value. In other
subsets however this error still exists, then test statistics value exceeds critical value. If testing
of the subsets finds only one combination whose test result does not imply an error, the missing
measurement (or equation) from this combination is found faulty and a new, acceptable location
solution can be computed by leaving out the equation that is identified to be faulty. If however
the test statistics value of more than one subset is below the critical value or the ARP value
of some subset is not acceptable, the error cannot be isolated. Then the obtained positioning
solution cannot be improved, and it is reported to be unreliable.

5.5 Reliability testing using global and local test

The reliability testing method represented in this section originates from reliability testing of
geodetic measurement networks [22], where concepts differ somewhat from the ones used in
the RAIM context. Principles are however similar in both: using statistical reliability testing
we determine whether measurements are in accordance with the assumptions. First, the whole
measurement set is observed, and a global test is used to detect an error (outlier detection). After
that, if an error was detected, local tests are done to identify faulty measurements (gross error
localization). The theory of this method is based on the assumption of one faulty measurement,
but practical applications have been developed from it for a case of many simultaneous errors.
Examples on how this method is used and more references are presented in [23].

Null hypothesis in testing is “there are no bias errors”, when measurement errors are zero mean.
Alternative hypothesis is “at least one measurement contains bias error”, when measurement
errors are not zero mean. If there are no bias errors, the distribution of the measurement errors
is assumed to be H0 : εεε ∼ N(0,Σ), in alternative case H1 : εεε ∼ N(µµµ,Σ).
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5.5.1 Global test

The purpose of a global test is to determine whether or not there are faulty measurements in the
measurement set. The quadratic form of residuals is used as test statistics:

T = vT Σ−1v.

Based on Section 5.3.1, it is observed that the distribution of T is central χ2 distribution if H0

holds, and a non-central χ2 distribution if H1 holds. The number of degrees of freedom, n−m,
of the distribution is defined based on the number of available measurements n and the number
of unknown states m. Defining the parameter λ of the non-central distribution is left as a part of
test design.

Because test statistics following a central χ2 distribution have smaller values than test statistics
following non-central χ2 distribution with the same number of degrees of freedom, a right-sided
critical area is selected for the test. Then the hypotheses to be tested are

H0 : T ≤ Tcr

H1 : T > Tcr.

In order to define the critical value the significance level α of the test is decided, i.e. how large
a probability for type I error is still acceptable. The critical value is chosen such that when
T ∼ χ2 (n− p), then P(T > Tkr) = 1−α, i.e.

Tkr = χ2
1−α (n−m) ,

where χ2
p (·) is the inverse function of the cumulative function of the χ2 distribution, with prob-

ability p as an argument and parameters of the distribution in brackets.

Performing a global test does not in itself require fixing the probability β and the parameter λ.
The dependence between these two is however nice to know, and additionally the values are
needed for defining the critical value of the local test.

In example 24 (on page 76) it was noted that probabilities α and β of type I and II errors depend
on each other, and the magnitude of β is affected by how much the parameter assumed by the
null hypothesis differs from the true value. This is used to select the λ value. First it is decided
what probability β of faulty decision is acceptable. After that a value of λ is sought such that the
cumulative function of distribution χ2 (n−m) has the value 1−α and the cumulative function
of distribution χ2 (n−m,λ) gets value β for the same T value:

χ2
1−α (n−m) = χ2

β (n−m,λ) .

In Figure 5.4 parameter selection is visualized in a case where the number of degrees of freedom
is 3. Parameter values α = 0.11 and β = 0.20 have been chosen, because using these values
the test statistics areas leading to faulty decisions are easily shown in the figure. In practice
especially the value of α is chosen to be smaller, α = 0.001 is a typical choice. Commonly used
β values are 0.2, 0.1 and 0.05.
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Figure 5.4: Defining parameter λ using α and β.

5.5.2 Local test

If the global test result is T > Tcr, it is inferrred that there is at least one erroneous measurement
among the measurements. A local test is used to identify those measurements that are suspected
to be faulty. According to H0 the distribution of measurement errors εεε is N(0,Σ), and then the
distribution of residuals v is N

(
0,RΣRT

)
. Standardized residuals are obtained from residuals

according to formula (5.8) by scaling each residual by its own variance, so for these wi ∼
N(0,1).

As the test statistics is chosen to be a standardized residual the hypotheses to be tested concern
normal distribution. In the global test, the whole residual vector is tested at once, whereas in
a local test each residual is tested separately. Hypotheses concerning residual wi are H0 : wi ∼
N(0,1) and H1 : wi ∼ N(δ,1), where δ 6= 0. Tests corresponding to the hypotheses are

H0,i : −wcr ≤ wi ≤ wcr

H1,i : wi < −wcr or wi > wcr.

Because the distribution is symmetrical, tests can be made right-sided by taking the absolute
value of standardized residual as test statistics:

H0,i : |wi| ≤ wkr

H1,i : |wi| > wkr.

In the local test, the mean δ of the distribution in alternative hypothesis is non-zero, corres-
ponding to the assumption in the global test that the non-centrality parameter λ is non-zero.
These parameters depend on each other, and using this information the δ of the alternative
hypothesis of a local test can be defined. Because in both tests the probability β and the devi-
ation of null hypothesis’s parameter (λ or δ) from the true value depend on each other, and since
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on the other hand δ is defined from the parameter of the global test, it is natural to use the same
probability β as in the global test for the selection of the critical value δ. Then the significance
level α0 of the local test is defined using fixed parameters δ and β.

In both global and local test the alternative hypothesis is based on the assumption that measure-
ments are normally distributed, but their mean is non-zero. Assume that all other measurement
errors are zero mean, but measurement i has bias: E (εi) = µi. Let us compare the effect of bias
of measurement i on parameter λ and on E (wi), the expectation of standardized residual. From
formulas (5.7) and (5.9) we see that λ = E (wi)

2, and from this it follows that |E (wi)| =
√

λ.
Because the absolute value of wi is examined in the local test, those distributions of the alterna-
tive hypothesis whose mean is positive are interesting. Then

δ = |E (wi)| =
√

λ.

Because δ and β define the critical value location, the problem becomes defining what value of
α0 it corresponds to. From Figure 5.5 we can see the following equalities:

a = n1−α0/2 (0,1) = wkr

b = nβ (δ,1) = n1−β (δ,1)−δ = n1−β (0,1)+δ−δ

δ = a+b = n1−α0/2 (0,1)+n1−β (0,1) ,

where np (·) is the inverse function of the cumulative function of normal distribution with prob-
ability p as an argument and distribution parameters in brackets.

δ = 2 . 4 5w c r = 1 . 6 1α 0 = 0 . 1 0 7b0 . 2 50 . 30 . 3 50 . 4 P r o b a b i l i t y d e n s i t y δa
2 4 6 8α 0 / 2 T e s t s t a t i s t i cα / 2 β0 . 10 . 1 50 . 2

04 2α 0 / 2 04 x 2x 6 x 400 . 0 5
Figure 5.5: Defining parameter α0 using δ and β.

5.5.3 Internal and external reliability

The smallest bias of the measurement, i.e. an outlier, that can still be detected by using statistical
testing is called MDB, minimum detectable bias or marginally detectable bias). It is used as a
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measure of internal reliability of positioning problem. External reliability on the other hand
indicates the effect of the smallest detectable bias on the estimate.

Expectation δ is the smallest bias in standardized residuals that can be detected by using the test
with probability 1−β and with confidence level 1−α. The smallest bias of measurement i that
can be detected using the test is

mi =
δ [Σ](i,i)√
[Cv](i,i)

. (5.10)

External reliability describes the effect of the largest undetected bias on the estimate. Let’s
assume that in measurement i there is bias with magnitude mi, and that in other measurements
there are no errors, i.e. the measurement error vector is ∆yi = [0 . . .0 mi 0 . . .0]T . Therefore,
the external reliability is obtained from

ei = K∆yi = [K](1:n,i) mi =
[(

HΣ−1HT
)

HT Σ−1
]
(1:n,i)

mi. (5.11)

External reliability tells how large estimation errors the testing can protect against — smaller
errors will not be detected in the test. If we consider a typical satellite positioning problem and
the three first elements of the state vector are location coordinates, then from external reliability
we can compute the radius of a sphere that contains the error of a location estimate caused by a
measurement error that is not detected in the test:

rPPLi
=
√

e2
i1

+ e2
i2

+ e2
i3
.

External reliability is also called the protection level (PPL, position protection level). If posi-
tioning computations have been done in ENU-coordinates or ei is transformed to ENU, we can
compute the horizontal protection level (HPL)

rHPLi
=
√

e2
i1

+ e2
i2
,

which is the radius of a circle that contains horizontal errors caused by a measurement that is
not detected in the test.

Protection levels rPPLi
and rHPLi

are not equal for different measurements, so a conservative
assessment of the general protection level of testing is obtained by computing protection levels
for all measurements and selecting the largest. Here a larger number describing protection level
means that larger errors go through the testing undetected.

Thus, reliability testing does not detect the smallest biases, and thus their identification cannot
be done. On the other hand very large errors also affect the estimate to which the iterative
linearization-based solution of navigation equations converges. Then the linearization point
drifts too far from the true location, and then also the geometry matrix will contain large errors.
These kinds of errors usually increase almost all residuals, which is usually seen in the test
statistics of the global test and the error is detected. However, error identification can be difficult,
because the geometry matrix that is used in error analysis is also erroneous.
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5.5.4 FDE

The practical FDE process is iterative. The global test aims to detect whether there are errors in
the measurement set. If an error is detected, a local test is done for each standardized residual
wi. Because there can be more than one error, more than one measurement may be found whose
wi does not pass the test.

A residual vi with large absolute value can be caused by an error in some other measurement
than yi. Often the redundancy matrix R, which describes measurement errors as residuals,
contains items outside its diagonal that have the properties

∣∣∣[R]( j,i)

∣∣∣> [R](i,i) or
∣∣∣[R](i, j)

∣∣∣> [R](i,i) .

In the first case the error of measurement i affects residual j more strongly than its “own”
residual. In the second case the effect of measurement j shows more strongly in residual i

than the effect of measurement i. This makes error detection more difficult or impossible. The
possibility of such a problem can be determined by studying the elements of R.

For the reasons mentioned earlier, a test variable wi that does not pass the local test cannot be
directly considered an indication that the corresponding measurement yi contains error, it only
gives a reason to suspect that measurement yi is faulty. That is why the global test is done again
after removing the suspected measurement. If the global test further gives reason to suspect
that even the modified measurement set contains error, testing is continued. When finally a
measurement set is found that passes the global test, it is often reasonable to try whether some
removed measurement could be added to the set without the global test giving an error again.
This is done because it is possible that some large error that has been removed later would have
strongly appeared in some residual, and the measurement corresponding to it was removed in
an earlier state of testing.

Exercises

5.1. (a) Show that the redundancy matrix R is idempotent.

(b) With what kind of weight matrix Σ−1 is matrix R symmetric?

5.2. (a) Show that residual covariance satisfies Cv = Σ−H
(
HT Σ−1 H

)−1
HT (5.4).

(b) Show that R = CvΣ−1 (5.5).

5.3. Show that rank(RT Σ−1R) = n−m. Hint: Show that

(a) x ∈ N (RT Σ−1R) if and only if x ∈ N (R)

(b) x ∈ N (R) if and only if x ∈ R (H)

(c) dim(R (H)) = m
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maximum a posteriori (MAP), 50
maximum likelihood, 31

88



posterior, 44
prior, 44
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Kalman, 43
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frequentistic interpretation, 35
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innovation, 45
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Iterative Least Squares, 27
Iterative Weighted Least Squares, 27
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Law of large numbers, 51
least squares

iterative, 27
linear, 6
weighted, 27, 78

likelihood, 31
linearization, 26

maximizing likelihood, 31
maximum likelihood, 31
measurement

carrier, 64
equation, 23, 40
history, 41
inequality, 28
linear, 43
nonlinear, 27, 46
pseudorange, 24
range, 24
system of equations, 24

misalignment, 63
model

constant velocity, 42
density form, 31
measurement, 24
measurement model, 23, 40
motion model, 42
state model, 40

Monte Carlo, 51
MSE estimator, 50

Newton method, 27
nonlinear Kalman filter, 46, 47
normal distribution, 9
null hypothesis, 74
null space, 4

orthogonal, 5
outlier, 27
over-determined, 6, 71

particle filter, 53
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positive definite, 5
posterior, 32, 49

approximization with sample set, 53
density function, 49
estimator, 44

prior, 32, 49
as proposal distribution, 54
approximization with sample set, 53
density function, 32
estimator, 44
uniform distributed, 33, 34

proposal distribution, 54
protection level, 86
pseudorange, 24

derivative, 66

RAIM, 71, 80
random variable, 7

expectation, 8
independence, 7
joint distribution, 12
modeling, 35

rank, 5
Rank Theorem, 5
redundancy matrix, 87
reliability, 72

external, 86
internal, 86

residual, 25, 78
standardized, 79

Ring Laser Gyro, 61
rotation vector, 16

Sagnac phenomenon, 61
scale factor, 63
scaling error, 63
SERP, 71
significance level, 75
SIR, 54
SIS, 53
square root of matrix, 5
state, 4, 23, 24, 40

error estimate, 25
vector, 24

state model, 40, 43
constant velocity, 42

state transfer

function, 40
matrix, 43

status quo, 74
stochastic process, 40
systematic resampling, 54

Taylor formula, 26
test efficiency, 75
tuning fork gyro, 60
type I error, 75
type II error, 75

unbiased estimator, 43
unscented Kalman filter, 48

Weighted Least Squares, 27
weighted Newton method, 27
WGS84, 14
white noise, 41
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