![]() |
Noir c'est noir... CHRONIQUE DE « Doc Carbur » N° 14 |
![]() |
SOMMAIRE |
Jamais au plus profond de la nuit on ne peut rencontrer une obscurité pareille à celle des cavités où pas un photon n’entre. Pas de Lune, pas d’étoiles et, n’en déplaise aux «Lutins bleus» pas d’alouettes phosphorescentes ; du noir rien que du noir… Il était donc naturel que Doc Carbur se penche sur la question. Notre petite causerie nous amènera donc à disserter sur le noir en tant que couleur, mais aussi sur la matière noire de l’Univers et même sur le noir de fumée. 1.Noir : est-ce une couleur au moins ?La couleur a été, avant de devenir un champ d’étude scientifique, une notion typiquement culturelle, sociétale et philosophique : donc en perpétuelle évolution. L’attribution de la qualité de couleur à part entière au noir est très dépendante des choix artistiques, des époques et des modes : c’est ainsi qu’il est passé en quelques millénaires, dans nos régions, du statut enviable de premier tracé pariétal néolithique (charbon de bois, oxyde de manganèse) à celui de couleur du deuil. Au cours de l’époque contemporaine récente, on l’a souvent déterminé par opposition au blanc qui serait la couleur finale et aboutie. Il y aurait donc quelque part le blanc, son inverse le noir, et enfin les véritables couleurs qui seraient au-delà de ces deux premières ; l’opposition de l’image noir et blanc (photo, cinéma, télévision) à l’image dite « en couleurs » y est pour beaucoup. Mais peu importe, pour le spéléologue, le noir est avant tout l’absence de lumière liée à la panne d’éclairage, qui peut être amusante si elle ne dure pas trop longtemps ou dramatique si elle survient dans des conditions critiques. C’est donc de cette lumière solaire, à laquelle les spéléos essayent d’échapper le plus souvent possible, que nous allons parler maintenant. La lumière solaire est une lumière
complexe, en ce sens qu’elle est composée d’une palette de
rayonnements comprenant de nombreuses longueurs d’ondes différentes.
C’est Newton (1642-1727) qui le premier semble avoir démontré
cela au cours de ses travaux d’optique grâce à l’expérience
de décomposition de la lumière blanche à travers
un prisme. Ce phénomène est d’ailleurs observable quotidiennement
sur Terre depuis des millions d’années à chaque fois
que se forme un arc-en-ciel, encore fallait-il l’interpréter
correctement. Étrangement pourtant, le noir et le blanc peuvent
tous deux être issus de la combinaison de l’ensemble des autres
couleurs. Comment le mélange de teintes variées (et
choisies correctement) peut-il donner soit du blanc, soit du noir
? En réalité il s’agit de deux phénomènes physiques bien différents. Si vous mélangez correctement des lumières colorées fondamentales et saturées (bleu-violet, vert et rouge) vous pouvez obtenir une lumière d’apparence blanche (donc incolore) : c’est le phénomène de la synthèse additive (qu’on pourrait assimiler à l’inverse de celui qui se produit dans le prisme). On peut faire l’expérience assez facilement en faisant tourner un disque coloré aux couleurs fondamentales : avec la vitesse, le disque apparaîtra blanc. Par contre, si vous mélangez des peintures de différentes couleurs, vous savez bien depuis vos premiers pas à la crèche ou en maternelle, que le résultat se rapproche bien plus du marron foncé ou du noir que du blanc. Pourquoi ? Il nous faut ici parler de la couleur non pas de la lumière, mais des corps. En effet votre gouache n’est autre qu’un corps pâteux contenant des pigments qui lui donnent une certaine couleur. Pourquoi le contenu du tube de vermillon est-il rouge ? C’est le phénomène de diffusion qui entre en jeu, soit en quelque sorte la partie de la lumière reçue qui rebondit dans les couches supérieures de la peinture puis revient vers votre œil. Si le vermillon est rouge c’est parce qu’il contient une matière (un pigment soigneusement choisi par le fabriquant) qui renvoie surtout la longueur d’onde correspondant au rouge et absorbe beaucoup plus les autres. La peinture blanche diffuse de la même façon et dans toutes les directions l’ensemble des longueurs d’ondes qu’elle reçoit et la peinture noire absorbe fortement et de façon équivalente toutes les composantes de la lumière reçue. Attention, cela ne signifie pas qu’une tache d’encre noire ne renvoie aucun rayonnement lumineux car dans ce cas votre tache disparaîtrait et se transformerait en trou noir (nous en reparlerons plus loin) : elle renvoie simplement peu de rayonnement lumineux dans l’ensemble des longueurs d’onde reçues et de façon équilibrée. Du coup, si vous mélangez tout un tas de peintures, vous vous trouvez avec un corps qui absorbe à peu près équitablement tous les rayonnements et qui est donc sombre.
Pour en terminer avec cette couleur noire, n’oublions pas que, comme elle absorbe beaucoup la lumière, elle est très utile dans tous les systèmes de chauffage solaire puisqu’elle en capte aussi l’énergie beaucoup plus aisément que toute autre couleur. Si vous voulez que votre voiture ne soit pas une fournaise dès les premiers rayons de soleil, prenez-la donc blanche plutôt que noire, quant à votre combi de spéléo, vous pouvez choisir la teinte qu’il vous plaira ce n’est pas le rayonnement solaire qui nous gêne beaucoup sous terre… 2.La noirceur de l’Univers ce n’est pas rien.
Les travaux des astrophysiciens ont pour but d’établir des théories bâties sur des lois qui peuvent expliquer la part observable de l’Univers et qui sont, de plus, vérifiables par l’expérimentation. En astrophysique, il arrive parfois que la théorie devance la confirmation, ou la réfutation, expérimentale de plusieurs années ou décennies. En effet, il n’est pas aisé de reproduire des situations galactiques en laboratoire ! Les conditions de température et de pression réunies au moment du Big-Bang ou celles, pourtant plus fréquentes dans l’Univers, que l’on rencontre au sein des trous noirs sont impossibles à créer par expérimentation : il faut donc se contenter d’approximations assez lointaines demandant pourtant des appareillages complexes et coûteux comme le accélérateurs de particules géants.
Tout d’abord, rappelons que depuis E = mc² (relativité restreinte), la masse de l’Univers est équivalente à son énergie. Donc, quand on « pèse » une galaxie ou une fraction d’espace intergalactique, on mesure la quantité d’énergie qui s’y déploie (vice versa et réciproquement). Tout ce qui compose l’Univers : matière, lumière et plus si affinités, entre donc dans le calcul de sa masse / énergie. Autre rappel important : la propriété essentielle et intrinsèque à toute matière est la gravitation qui tend à la rapprocher, à la concentrer.
Le problème c’est que les observations ne collent pas avec les calculs basés sur les équations de la théorie de la relativité générale, qui a pourtant été validée à maintes reprises au cours du XXe siècle. En effet si on tient compte de toute la matière classique visible (étoiles, gaz chauds, objets émettant ou absorbant des rayonnements divers), de toute la matière classique supposée mais peu visible (planètes, astéroïdes, comètes, poussières et gaz froids), il n’y a pas assez de masse / énergie – et de très loin s’en faut – pour expliquer la disposition des amas de galaxies ainsi que les mouvements des galaxies elles-mêmes. En bref : les calculs de correspondent pas à la réalité observée, et pour un scientifique c’est la preuve qu’il y a un os quelque part ! De deux chose l’une : soit la théorie gravitationnelle avec laquelle on mouvement des corps célestes est incomplète, soit il existe une quantité de masse / énergie, non conventionnelle et invisible autour des amas de galaxies et un peu partout en divers lieux de l’Univers. Cette matière, dite « noire » car non détectable, représente tout de même de 5 à 10 fois l’ensemble de la matière ordinaire de l’Univers : ce n’est pas rien ! Cette « matière noire » serait composée de particules exotiques, très difficiles à détecter. On leur a donné de drôles de noms : neutralinos, axions, particules supersymétriques etc. En tout cas la matière noire de l’Univers fait sacrément travailler la matière grise des astrophysiciens…
L’expérience fut un succès, en plusieurs années on arriva à détecter le passage de quelques neutrinos dans la piscine : environ une quinzaine par jour. On détectera aussi avec d’autres appareillages des neutrinos stellaires et on évaluera indirectement les neutrinos anciens du Big-Bang. Au bout du compte il existe de nombreuses variétés de neutrinos et cela en fait un nombre considérable, il restait donc à trouver leur masse. La chose n’est pas simple et je vous passe les détails : on ne pèse pas un neutrino comme le kit-bag d’un spéléo. Toujours est-il qu’actuellement l’immense majorité des travaux en cours tendent à prouver que la masse maximale des neutrinos est si faible qu’il se pourrait bien, qu’à l’instar de celle du photon, elle soit nulle. Pour faire office de « matière noire » pesant 10 fois plus lourd que toute la matière ordinaire, c’est finalement raté : il faudra donc trouver autre chose ! On ne récupère, au mieux, avec eux que quelques millièmes de la masse / énergie qui manquait…
L’autre possibilité, bien sûr, serait que la théorie de la gravitation ne puisse pas s’appliquer de façon identique à petite et à grande échelle, en d’autres termes : la relativité générale fonctionne bien sur Terre et dans le système solaire puisque c’est grâce à elle qu’on peut par exemple faire fonctionner correctement le système de localisation par satellite GPS ou GALILEO, mais à l’échelle de l’Univers elle ne s’applique pas de la même façon et doit être modifiée. Plusieurs groupes de physiciens ont donc proposé des variantes de la théorie classique où, en modifiant certains termes mathématiques, on pouvait se passer de cette masse noire. Après la théorie MOND en 1983 (acronyme anglais pour Modification de la Dynamique Newtonienne), on a vu éclore la théorie TEVES en 2004 (acronyme anglais pour Tenseur Vecteur Scalaire). Toutes deux sont en cours d’évaluation, voire de réfutation, par les tenants du couple relativité générale + matière noire. Les dernières observations des télescopes spatiaux ou des satellites d’étude de l’Univers lointain tendent en effet à conforter l’existence de cette matière invisible et interagissant peu avec la matière ordinaire (atomes et électrons).
Si vous languissez d’avoir le fin mot de l’histoire, préparez donc un doctorat de physique ou lancez-vous dans la politique pour faire voter des budgets de recherche. D’ici là, il vous faudra bien attendre jusqu’à ce qu’on arrive à détecter une de ces particules décrites par la théorie classique sur la matière noire. À la détecter ou à la créer au sein d’un accélérateur et collisionneur géant de particules dont le but est d’imiter les énergies mises en jeu aux premiers instants du Big-Bang. C’est un tel appareil qui a été construit près de Genève et qui va commencer, au moment où j’écris ces lignes, à travailler. Quand le LHC, c’est son nom, tunnel circulaire souterrain et gigantesque rempli d’aimants et de détecteurs, tournera à plein régime nous aurons peut-être enfin la réponse à cette épineuse question : matière noire ou nouvelle théorie de la gravitation ? Encore un peu de patience, et puis si ça ne suffit pas il faudra accélérer encore avec l'ILC (accélérateur linéaire encore plus puissant)…
Que s’est-il passé depuis ? Les observations
des supernovas lointaines effectuées avec certains télescopes
récents ont permis en 1998 de constater que notre Univers n’est
pas en expansion régulière : celle-ci s’accélère
très sensiblement. Du coup, il a fallu à nouveau revoir
la théorie de la relativité générale à
la lumière de cette découverte. La gravité aurait
dû freiner l’expansion de l’Univers hors il n’en est rein :
toute la matière (conventionnelle ou noire) s’écarte
et s’éparpille de plus en plus vite (et ce, depuis 4 à
5 milliards d’années, après une période initiale
post Big-Bang où la gravitation avait effectivement freiné
l’expansion).
Quelle est donc cette force répulsive capable d’écarter de plus en plus vite les galaxies, les amas de galaxies, les nébuleuses, les trous noirs ??? Un calcul basé sur le rapprochement des observations de la distance des supernovas très lointaines (donc de leur âge) et des équations de la relativité générale, permet d’établir qu’environ 70 % de l’énergie de l’Univers est à ce jour inconnue : on l’a donc baptisée « énergie sombre ». Quelle est son origine ou sa nature ? Nul n’en sait rein à ce jour : seul son effet antigravité est constaté et avéré ; sombre elle risque donc de le rester encore longtemps…
Résumons, à ce jour pour confectionner un Univers acceptable il nous faut approximativement : 0,3 % de matière noire dite
chaude (les neutrinos), Bon, je sais, ça fait 100,3 % mais comme nous ne connaissons correctement que moins de 5 % de l’énergie qui compose notre Univers, on ne va pas pinailler pour si peu. En bref, plus de 95 % de la recette est encore aussi sombre que la salle de la Verna éclairée avec une bougie de gâteau d’anniversaire. Il y a donc des découvertes à faire : chers lecteurs avides de premières voilà qui devrait susciter chez vous des vocations de physiciens, à défaut de spéléologues, non ? Tous ceux qui ont pu être à Paris au cours de l'été 2009, on peut-être assisté à ceci : UNIVERS INVISIBLE (Palais de l'UNESCO)
Parmi les 4,5 % de matière noire peu visible mais de nature classique, un des objets les plus insolites est le trou noir. Voilà un élément céleste dont le vocable a tout pour plaire à l’auteur de ces lignes : « Ah, les gouffres, abîmes et trous noirs de toutes sortes, quel bonheur ! » Mais revenons à des considérations plus cosmologiques.
Et c’est là qu’Einstein vint à notre secours avec sa nouvelle conception d’espace-temps : la lumière est déviée par la gravitation et lorsqu’elle passe au niveau d’une zone d’espace aussi « lourde » que celle d’une étoile en cours de rétrécissement, arrive un moment où elle est déviée vers celle-ci sans pouvoir en ressortir à cause de la courbure extrême de l’espace-temps à cet endroit. Le trou noir vient de se former : aucune lumière ni aucune particule n’en sort, il est donc totalement et irrémédiablement invisible. Il y a bien quelque chose à cet endroit là, quelque chose de pas très gros (à l’échelle spatiale) et de très très dense, mais on ne le voit pas.
Si un trou noir se trouve dans une zone riche en
gaz, poussières, étoiles, il va les avaler inexorablement
et il se formera à sa périphérie un disque d’accrétion
dont la frange interne, la plus proche de l’horizon des événements,
soumise à des pressions gravitationnelles gigantesques va émettre
des bouffées de rayonnements détectables à des
années lumières de distance. Et ce n’est pas tout, d’après
le physicien Stephen Hawking, la physique quantique (pour parler de
mécanique quantique, allez voir l’article
sur la lumière) implique que des couples particules / antiparticules
tombant dans le trou noir entraîneraient aussi la sortie d’information
du trou noir, d’où cette image de trou noir « chevelu
» illustrée dans un de ces ouvrages (voir bibliographie
en fin d’article).
Plus j’avance et plus je trouve de ressemblances entre les spéléos passionnés de découvertes nouvelles et les astrophysiciens. Voici que ces derniers viennent de se lancer dans une traque que nombre d’entre nous pratiquons à longueur d’année : la recherche de trous noirs. Il est bien satisfaisant d’avoir modélisé les différents types de trous noirs et d’avoir confirmé leur existence à partir de détections indirectes, mais rien ne vaut l’observation directe. Quel effet aurait sur vous un magnifique aven dont vous ne connaîtriez que les trois rangs de barbelés placés autour : plutôt frustrant non ?
Le problème est double : en effet rien ne prouve encore l’existence de ces gravitons ; il va donc falloir essayer de les détecter pour démontrer en même temps qu’ils existent et qu’on peut grâce à eux repérer les trous noirs. On fera alors d’une pierre deux coups, mais ce n’est pas gagné ! La technologie qui permettrait de détecter ces variations infimes de la gravité est basée sur des interféromètres ; les deux modèles actuellement en lice sont VIRGO (franco-italien) et L.I.S.A (futur interféromètre spatial). Peut-être dans les années à venir aurons-nous la démonstration de la propagation d’ondes gravitationnelles provenant de l’amas de la Vierge, du Cygne ou du nuage de Magellan. D’ici là, j’espère que les potes de Doc Carbur auront fait pas mal de première…
|